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The frame-transformation theory of electron interaction with a vibrating diatomic core is extend-
ed to allow for energy depedence of its parameters. The Born-Oppenheimer separation of electron
and nuclear motion is preserved when the electron penetrates the molecular core. The extended
theory reproduces the boomerang-model treatment of vibrational excitation in resonant e-N; col-

lisions.
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A basic problem of molecular physics concerns the
description of an electron incident on a vibrating
molecule, charged or neutral.! Correlations between
the electronic and nuclear degrees of freedom must be
considered whenever an interconversion between elec-
tronic and vibrational energies can occur, as in vibra-
tional excitation of molecules by electrons or vibra-
tional autoionization. A natural theoretical starting
point is to focus initially on the fixed-nuclei scattering
phase shift wu(e,R) characterizing the electron-
molecular interaction in the body frame. This depends
in general on the electron energy € as well as on the
nuclear separation R, and is defined by the asymptotic
form of the fixed-nuclei electronic wave function,

yr= r 1O "V[f (r)cosmule,R)
—g(r)sinru(e,R)], (1)

r=ry. Here @'~ 1 is the target electronic wave
function (including also the spin and orbital wave
functions of the Nth electron) and f.(r) and g.(r) are
regular and irregular radial wave functions for the scat-
tered electron with energy € in the appropriate long-
range potential. The symbol /' implies antisymmetri-
zation of the Nth electron with the target electrons.
The boundary of the inner region or ‘‘reaction zone,”’
beyond which exchange and correlation effects are
unimportant, is denoted here by .

Previous theoretical efforts to understand
vibrational-excitation cross sections in electron-
molecule collisions have been largely restricted to two
opposite limiting extremes. The limit of resonant
scattering is associated with a very strong energy
dependence of wu(e,R). When the incident electron
can be trapped for several vibrations, the boomerang
model of Herzenberg? defines a potential curve for the
vibrational motion of the molecular complex. Its suc-
cess in describing vibrational-excitation cross sections
is well documented. Conversely, in the opposite limit

of nonresonant scattering, the vibrational-frame-
transformation theory of Chang and Fano® assumes
that the nuclei are frozen when all electrons are in the
reaction zone. Accordingly, a reaction matrix is con-
structed as a simple integral involving vibrational wave
functions X, (R) of the target:

K= [dR x,(R)tanlapu(R) X, (R). @)

This extreme limit of energy-independent w(R) (cor-
responding to a negligible electron time delay in the
reaction zone compared to a vibrational period) is real-
ized to a good approximation in the np A Rydberg
states of H,. Application of Eq. (2) has given very
good agreement* with experimental energy levels and
photoionization cross sections,® and recently® with
photodissociation cross sections as well. [It should be
pointed out that Eq. (2) emerges in only one limit of
the Chang-Fano analysis. An equivalent expression
had been previously derived in the context of nuclear
scattering theory,” and its application to electron-
molecule collisions is referred to as the ‘‘adiabatic-
nuclei approximation’’ in Ref. 1.]

Recent work on electron-molecule scattering® has
shown Eq. (2) to be inadequate when the energy
dependence of w(e,R) is significant. The adiabatic-
nuclei approach works much better for e-H; than,
e.g., for e-H, collisions, because the Coulomb ac-
celeration gives even a low-energy electron a high
speed within r < ry when the molecular core is
charged. In practical terms, a problem arises because
no obvious criterion exists for which € to use in the
matrix element (2), and because very different results
can be obtained for different choices of €. Conse-
quently, the assumption that the nuclei are frozen
when all electrons are in the reaction zone is no longer
qualitatively correct. In response to this problem
Schneider et al.® have developed an R-matrix formula-
tion which can account for an arbitrary energy depen-
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dence of w(e,R), resonant or nonresonant. They ex-
pand the total wave function of the system inside the
reaction zone in terms of a complete set of Born-
Oppenheimer wave functions having a fixed (in prac-
tice, zero) logarithmic derivative on the reaction-zone
boundary. Several potential curves are needed in order
to achieve convergence of this expansion because the
true scattering wave function does not obey a
preselected boundary condition.

In this paper we identify a set of short-range wave
functions ¢, each of which is a Born-Oppenheimer
product corresponding to a single adiabatic potential
curve. Moreover, this potential curve can be extracted
directly from the fixed-nuclei scattering phase shift
7 (e,R), which is usually obtained in ab initio calcula-
tions. We thus obtain a frame-transformation theory
in which the nuclei are not frozen while all electrons
are inside the reaction zone.

Consider an electron in the field of an (N —1)-
electron target molecule, having a potential energy
curve U¥~D(R) and vibrational wave functions
X,(R) at energy levels E,. Outside the target
molecule, say at r = ry, the Nth electron moves in a
simple long-range potential, and each eigenchannel
wave function y,, has the form!'% !!

Wo=o r~' 20 (@ VX, (R} U,,
x[f,(r)cosmr,—g,(r)sinmr, 1. (3)

Equation (3) holds beyond roughly ro—~ 10 a.u. for
nondipolar neutral targets. The target is described by
vibrational wave functions X, (R) at energies E,, and
by an electronic wave function ®{¥~". The regular
and irregular functions (f,,g,) correspond to a chan-
nel energy e,=FE —E,. The matrix U,, in Eq. (3)
consists of the eigenvectors of the reaction matrix K v’
and the tanw7, are its eigenvalues. When the long-
range field is Coulombic, f, and g, can generally be
taken to be energy-normalized Coulomb wave func-
tions.!%1! In electron-neutral scattering, instead, they
are defined as ‘‘analytic’’ zero-field solutions for the
appropriate partial wave /,

SO(r) =k 1Q2/m) 2y (K ),
@
gd(r) =Kkt (2/m) 2 (K yr).

Two things are essential in Eq. (3). Firstly, the
summation over v may include closed channels with
€, < 0, in which case ¢, is actually divergent at r — oo.
On the other hand it is a smooth wave function at small
distances, since the strong energy dependences (asso-
ciated with resonances) arising from closed-channel el-
imination are not present. Secondly, in the case of
electron-neutral scattering, the use of analytic solu-
tions (f%g%) removes complicated (e.g., Wigner)
threshold effects from the reaction-matrix eigen-

phase-shifts =7, and eigenvectors U,,, which are then
also analytic in £. Knowledge of the 7, and U,,, yields
an essentially exact wave function ¢, at r =rg in
closed form. Standard quantum-defect procedures!! 12
will then be applied to determine linear combinations
of the ¢, which are well behaved at r — oo and energy
normalized. The resulting eigenfunctions are charac-
terized by a ‘“‘physical’’ reaction matrix or scattering
matrix, all of whose channels are open, correctly in-
cluding threshold and resonance effects.

We proceed on the assumption that i, is a Born-
Oppenheimer product within r < r,. The electronic
factor must satisfy Eq. (1) on the reaction surface
r=rg, and simultaneously it must have the same
eigen-phase-shift 7+ in all channels v as required by
Eq. (3). This will be achieved only if the fixed-nuclei
phase shift is R independent, i.e., u(eR)=r7 at all
values of R. This requirement selects a body-frame
energy €™ (R) for each value of R, which adds to the
target potential UN=D(R) to give the potential curve
of the system,

UD(R)=UN-"D(R) +€(R). ©))

The eigen-phase-shifts 7, are finally identified by re-
quiring that a vibrational energy eigenvalue coincide
with the desired total energy E. We denote the nor-
malized vibrational wave functions in this potential
curve by F,(R). When (f,,g,) ~ (f..g.) for all v at
r =ry, the eigenvectors of the smooth reaction matrix
are simply Franck-Condon overlap integrals,

Upa=J dR X,(R)F,(R). (6)

(More accurate expressions can be derived if neces-
sary.) The procedure just described amounts to an
eigenchannel R-matrix calculation of the type outlined
by Fano and Lee.!® The energy is calculated as a func-
tion of the phase parameter 7, and the acceptable
values of 7 are those giving the correct energy E.

If w(e,R) has no dependence on e, the equation
7=pu(e,R) has a solution at one R value (or a finite
number) irrespective of e. Hence F,(R)— 8(R
—R,) and the adiabatic-nuclei result of Eq. (2) is
recovered. To show that our Born-Oppen-
heimer—based frame transformation can handle
energy-dependent phase shifts u(e,R) as well, we con-
sider an application to resonant e-N, collisions in the
dmg channel. Dubé and Herzenberg'* have fitted ex-
perimental results with a Breit-Wigner profile in their
boomerang calculation, obtaining €;(R) and I'(R) in
the expression

tanmru(e,R)=—3T(R)/le—¢€y(R)]. @)

This phase shift 7u(e,R) is referred to the more usual
energy-normalized zero-field solutions rather than to
the analytic f° and g° of Eq. (4). The connection is
given by tanmu’(e,R)=[2¢(R)]17/~2tanwu(e,R).
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Because u in Eq. (7) does not vanish at e=0, we as-
sume instead a Breit-Wigner profile for the analytic
u’(e,R) with the same ¢,(R) used by Dubé and Her-
zenberg, but with a rescaled width T°(R)
=[2€o(R)17/~ 2 (R) determined from their param-
eters. Figure 1 compares the resulting w(e,R) and
u’(e,R), showing how the latter is a much simpler
and smoother function of both € and R. This follows
from the fact that the energy-normalized regular and
irregular solutions of a free particle have a strong ener-
gy dependence at small r resulting from the centrifugal
barrier. By defining the phase shift 7T/.L0 with respect
to solutions f° and g° which are energy independent at
small r, we eliminate this trivial energy dependence
from u°(e,R). The Born-Oppenheimer potential
curve referring to motion within the reaction zone is
then

UTD(R)=UPN"D(R) +¢(R)
— = cotmrT°(R). ®

(b)
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FIG. 1. The fixed-nuclei quantum defect for the d =, par-
tial wave of an electron scattered by N, shown as a function
of the body-frame energy € and of the internuclear separa-
tion R measured from the equilibrium separation of N,.
The position and width of the Breit-Wigner profile is taken
from Dubé and Herzenberg (Ref. 14). (a) Quantum defect
w(e,R) referred to energy-normalized zero-field solutions;
(b) analytic quantum defect u°(e,R).
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Since the dependence of U™ (R) on 7 is particular-
ly simple for a Breit-Wigner profile, the allowed 7, can
be found by a simple variant of the iterative procedure
outlined above. That is, the vibrational states F,(R)
in the potential U™ (R) are expanded in states X, (R)
of the target with coefficients c,, to be determined.
The equation determining the eigen-phase-shifts 7, is
then a standard generalized eigenvalue problem,

3 LE,—E)s + (vleglv) Ie,,
= ';‘(Zv/(vlfoh') CU'Q)COt"TTa- 9

The eigenvectors U, coincide with ¢, in the approxi-
mation (6). The solution of (9) can be performed ef-
ficiently and on a coarse energy mesh since the U,,
and 7, are insensitive to threshold effects and to most
resonance effects. With a basis of twenty N, vibration-
al states the present calculation accurately converged.
Figure 2 compares several of our calculated cross
sections for vibrational excitation of N, with experi-
ment and with the semiclassical calculation of Dubé
and Herzenberg. The good agreement demonstrates
that this approach accurately describes resonant
scattering processes in addition to the nonresonant and

THEORY

''''' EXPERIMENT

ARBITRARY UNITS ——>
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FIG. 2. Calculated cross sections for vibrational excitation
of N, using the present formulation (right-hand side) com-
pared with the experimental (Erhardt and Willman, Ref. 15)
and theoretically fitted (Ref. 14) cross sections (left-hand
side). Also indicated as a dashed curve on the right-hand
side is the result for the 0 — 1 partial cross section which is
predicted by Eq. (2).
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near-threshold collisions handled by the adiabatic-
nuclei theory. A few residual differences between the
calculations are apparent in Figure 2, but their origin
has not been determined. Note that we have not reop-
timized any parameters from the Dubé-Herzenberg fit.
The adiabatic-nuclei results are also shown in Fig. 2
for comparison, for the 0— 1 partial cross section
only.

To summarize, we have developed a unified treat-
ment connecting energy-dependent fixed-nuclei
scattering phase shifts to the full scattering matrix.
When several partial waves interact at fixed R, the
same procedure applies except that eigen-phase-shifts
of a fixed-nuclei reaction matrix K,,(e,R) are used in

place of w(e,R). In the present approach each eigen-
state s, is represented at small distances by a Born-
Oppenheimer product associated with a single adiabatic
curve and corresponding to a vibronic energy that
coincides with the true energy E. In addition, each
adiabatic curve U (R) is related directly to the
single-electron phase shift 7u(e,R). Dissociative
channels could be readily incorporated into this ap-
proach along the lines described in Ref. 6.
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