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Glauber theory can describe elastic scattering of o. particles by He, 'He, H, and 'H at 7 GeV/c if
the phase of the nucleon-nucleon elastic-scattering amplitude varies with momentum transfer. The
phase variation leads to diffraction patterns differing markedly from those typical of constant-phase
calculations and greatly affects the magnitudes of the intensities. These changes are mainly due to
changes in the interference between amplitudes for different orders of multiple scattering and to a
decrease in their moduli.

PACS numbers: 25.55.Ci, 21.30.+y, 24.10.Ht

During the past twenty years the Glauber theory has
been extremely successful in describing hadron-
nucleus elastic scattering at energies of approximately
1 GeV or higher. This success has not been shared to
the same degree in nucleus-nucleus ("heavy-ion")
elastic scattering at corresponding energies of 1

GeV/nucleon or higher for several reasons. First,
there has been a relative paucity of such measure-
ments. Second, the extension of the theory to
nucleus-nucleus collisions is significantly more com-
plex and the computations are more difficult and
lengthy so that fewer of these types of calculations ex-
ist. '

Recently a comprehensive set of measurements of
elastic scattering of o. particles by four very light nuclei
(4He, 3He, 2H, 'H) was made at an incident n-particle
momentum of 7 GeV/c over a range of ~t~ values
from —0.07 to —4 (GeV/c) . The cross sections fell
from the barn to the nanobarn level. Such data, in
which the intensities vary through so many orders of
magnitude and over such a large range of momentum
transfers, are extremely useful because they put enor-
mous constraints on any theory. It is no longer suffi-
cient to show that the theory describes measurements
of collisions between just one given pair of nuclei.
Now the theory must describe measurements between
four different pairs of nuclei, and it must do so con-
sistently. Whatever nucleon-nucleon (NN) elastic-
scattering amplitude is used for one calculation should
be used for the others as well. In addition, since these
measurements have gone out to rather large momen-
tum transfers, the calculated intensities will be much
more sensitive to the NN elastic scattering amplitudes
used as input.

The measurements for elastic scattering of o. parti-
cles by the four light nuclei were accompanied by
theoretical analyses for the o.- H, o.- He, and n- He
cross sections. These analyses were both by means of
the so-called "rigid projectile approximation" and by
means of the Glauber theory, with Gaussian densities
for the nuclear ground states. The rigid-projectile ap-
proximation failed even qualitatively except at very

f= (iko. (1 —i p)/4vrje ' (2)

with values of cr=44 mb, p= —0.23, and b =6.0
(GeV/c), which are the averages of the correspond-
ing pp and np measured values. The results are shown
by the dashed curves (y =0) in Fig. 1, together with
the experimental data. In all four cases the agreement
is poor, even qualitatively, except at very small
momentum transfers. The disagreement is at times by
an order of magnitude or more.

Is it possible to obtain reasonable agreement with
the data without modifying the usual Glauber theory?
We note that the NN scattering amplitude, Eq. (2), has

small momentum transfers. In the Glauber-theory
calculations shown, the broad qualitative trends of the
data were to some extent roughly described. Quantita-
tively the results were in strong disagreement with the
data, often being as much as an order of magnitude
too low.

In the present analysis we have calculated the
elastic-scattering differential cross sections for all four
pairs of nuclei, evaluating the full multiple-scattering
series (through sixteenth order multiple scattering for
o.- He collisions, twelfth order for o.- He collisions,
eighth order for o.-d collisions, and fourth order for
a-p collisions). We have used Gaussian densities for
3He and He, with 1.88 and 1.671 fm for their rms ra-
dii, respectively. The resulting form factors for He
and 4He are of the form S = exp( —R q /4) in which
we have corrected R for center-of-mass recoil and
finite-proton-size effects. We have used4 (r 2)
=0.77542 fm, and we obtain R =2.759 fm2 for He
and R2= 1.793 fm2 for 4He. For the deuteron we have
used a sum of Gaussians which was fitted to the deu-
teron ground-state form factor. The form factor used
is given by5

S =0.34exp(141.5t) +0.59exp(26. 1t)

+ 0.08 exp(15 5t) (1). .

For the NN scattering amplitudes we have used the
standard form

1985 The American Physical Society 1059



VOLUME 55, NUMBER 10 PHYSICAL REVIEW LETTERS 2 SEPTEMBER 1985

10
I

IO

IO

t02'

) lO

IO
E

10

b
10

IO

IO

10

a constant phase when b is taken to be the slope of the
NN forward differential cross section, as it almost al-
ways is. However, it is perhaps not unreasonable to
expect that over the rather larger range of momentum
transfers represented by the data the phase will vary
appreciably. A simple phase variation can be effected
by taking the NN amplitude to have the form

g = [ik o-(1 —i p)/4m]e( b+ ly) t/2' (3)

One of us (VF) used such a phase variation many
years ago to describe hadron-deuteron scattering7 and
also suggested this phase variation for quark-quark
amplitudes in early hadron-hadron multiple-scattering
analyses using quark models. 8 This parametrization
does not affect the NN differential cross section and b
is still the measured NN slope parameter. Now, how-
ever, there is one adjustable parameter, y, since the
NN phase variation cannot be measured directly from
NN scattering. But the same value of y must be used
in describing all four Q. -nucleus measurements since it
is independent of the nucleus.

In Fig. 1 we show our calculations for o.- He, n- He,
n-d, and n-p elastic scattering with y = 11 (GeV/c)

0 I 2 5
-t (GeV/c)

FIG. 1. Differential cross sections for elastic scattering of
u particles by He, 3He, 2H, and 'H, at 7.0 GeV/c [data of
Satta et al. (Ref. 2)]. The dashed curve is the constant-
phase result (y = 0). The dotted and solid curves are calcu-
lations with phase variations in the NN amplitude [y = 11
and —16 (GeV/c)2, respectively, in Eq. (3)].

and also with y= —16 (GeV/c) 2. (When p is small
in magnitude there generally are two values of y of
roughly equal magnitude but opposite signs which
yield somewhat similar results at large momentum
transfer. ) The agreement with the data is much im-
proved in all cases, and in some cases it is rather good.

While the t dependence of the phase variation of the
NN amplitude may not be as simple as that assumed in
Eq. (3), the marked improvement in these light-ion
results strongly indicates the presence of a phase varia-
tion. Furthermore, while it is also true that the NN
phase we obtain varies by a few cycles between the for-
ward direction and —t = 4 (GeV/c), the modulus of
the NN amplitude given by Eq. (3) varies by more
than 5 orders of magnitude over the same range of
momentum transfer. With such a large modulus varia-
tion it is not unreasonable to expect a large phase vari-
ation. In addition, at values of t where n th-order mul-
tiple scattering dominates, the intensity often depends
on the NN amplitude at t/n . For example, in Q. -p col-
lisions near —t = 1.8 (GeV/c) the dominant ampli-
tude is the quadruple-scattering amplitude which
depends mainly on the NN amplitudes at the much
smaller value —t = 0.1 (GeV/c) .

Why is there such a marked change in the differen-
tial cross sections when the NN amplitude has a phase
variation? For the lightest ions and at momentum
transfers which are not too large the answer is to be
found mainly in the resulting phase relations among
the amplitudes corresponding to the various orders of
multiple scattering. Let us consider, for example, o.-d
scattering. In Glauber theory the collision is described
in terms of scattering amplitudes for single scattering,
double scattering, and so on, up through octuple
scattering. If there is no phase variation (y = 0) and if
p is small in magnitude compared with unity, ampli-
tudes for any two successive orders of multiple scatter-
ing will be —m —

p radians out of phase with each oth-
er, i.e., their phases will be totally correlated and will
differ by nearly m. At t = 0 the moduli of these ampli-
tudes decrease with increasing order of multiple
scattering, but as —t increases the moduli of the
higher-order amplitudes decrease more slowly. Conse-
quently for small It I values the single-scattering ampli-
tude is largest, at somewhat larger I t I values the
double-scattering amplitude is largest, and so on. This
very regular relationship among the moduli and among
the phases is conducive to very strong destructive in-
terference among the amplitudes for the various or-
ders of multiple scattering, leading to the appearance
of minima in the cross sections. For example, the
minimum near —t = 1.73 (GeV/c)2 shown in Fig. 1

(y =0) occurs as a result of very strong cancellations
between the amplitudes for odd-order multiple scatter-
ing and those for even order. In Fig. 2(a) we show in
the complex plane the largest four amplitudes at
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FIG. 2. Amplitudes for multiple scattering in the complex
plane, for n dscatter-ing at —t =1.726 (GeV/c)2. The dot-
ted lines represent amplitudes for triple (3), quadruple (4),
quintuple (5), and sextuple (6) scattering. The dashed lines
represent the sum (3) + (5) and the sum (4) + (6). The
solid line represents the sum (3) + (4) + (5) + (6). (a) No
phase variation, y =0. (b) y =11 (GeV/c)'. (c) y = —16
(GeV/c) . The units are arbitrary but the same in (a),
(b), and (c).

—t = 1.726 (GeV/c) (the dotted lines, which are la-
beled 3, 4, 5, and 6 corresponding to triple through
sextuple scattering). First, it is clear that although the
above minimum is the third minimum (see Fig. 1), it
does not arise only (or even mainly) from the interfer-
ence between the triple- and quadruple-scattering am-
plitudes, as the usual arguments regarding the Glauber
multiple-scattering series would lead one to believe.
In fact, the quintuple-scattering amplitude is larger
than the triple-scattering amplitude. Second, all four
amplitudes shown are appreciable. The triple plus
quintuple amplitude and the quadruple plus sextuple
amplitude (shown dashed) are nearly equal and oppo-
site. Their resultant is given by the short solid line at—30' with the horizontal. In this case, the amplitude
for sextuple scattering (not shown) is nearly equal to
this resultant in magnitude and is at 181, leading to
an actual final resultant that is half as large as that
shown. It is this almost perfect cancellation among the
third- through seventh-order multiple-scattering ampli-
tudes that leads to the minimum near —t = 1.73
(GeV/c) 2.

What happens when there is a phase variation? The
moduli of the amplitudes for all orders except single
scattering decrease compared to those obtained with
no phase variation. The larger the order of multiple
scattering, the greater the decrease. But more impor-
tant at momentum transfers which are not too large,
the phase relations among the various amplitudes are
greatly changed. Amplitudes for successive orders of
multiple scattering no longer always have phase differ-
ences close to m, nor do they even have constant
phase differences. Consequently, very strong destruc-
tive interferences will be much less likely, especially
away from the very small momentum transfers.
Therefore, despite smaller individual amplitudes for

double through octuple scattering, the resultant
scattering amplitudes and corresponding differential
cross sections will generally be larger than for the case
of no phase variation.

In Figs. 2(b) and 2(c) we show the largest four am-
plitudes for 7 = 11 (GeV/c) and 7 = —16
(GeV/c ) at —t = 1.726 (GeV/c ) . We see that the
lack of total correlation among the phases leads to a
much smaller degree of cancellation and therefore to a
much larger resultant amplitude. The resulting dif-
ferential cross section (see Fig. 1) consequently exhi-
bits only a weak shoulder and is much larger than that
obtained with no phase variation. This argument is
not valid for the larger systems at the very large
momentum transfers. In those cases many higher-
order multiple-scattering amplitudes are significant
and the decrease in the moduli of these amplitudes rel-
ative to those obtained with no phase variation is very
great. This large decrease more than offsets any ten-
dency for strong cancellation among the amplitudes
obtained with no variation, and consequently leads to
cross sections which are smaller than those obtained
with 7 =0. [For example, see the n- He results for
—t & 3 (GeV/c)' in Fig. I.]

The above discussion shows that the presence of a
phase variation in the XX elastic-scattering amplitude
leads to large changes in the o.-p, o. -d, n- He, and +-
He elastic-scattering differential cross sections, and

brings the Glauber theory into agreement with the
measurements.
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