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Mass Scales of the String Unification
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Although mass scales associated with string tension, compactification of extra dimension, and
Newtonian gravity are a priori independent, these scales must be approximately equal to each other
in any unified string theory with realistic couplings. Consequently, the compactification cannot be
adequately described in terms of ten-dimensional field theory.
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Superstrings offer an exciting possibility of con-
structing a consistent theory of all particle interactions.
The naive low-energy limit of superstring theories is a
ten-dimensional X = 1 supergravity coupled to an
SO(32) 3 or E8 S E83 gauge supermultiplet. Howev-

er, superstrings also allow for vacua with six dimen-
sions forming a compact manifold Q, and the low-

energy physics being described by a four-dimensional
field theory; in particular, when Q is a Calabi-Yau
manifold, low-energy theory is N = 1 supersymmetric. 4

The size of Q is a priori unrelated to the string tension
o.', and so a unified string theory possesses two in-

dependent mass scales —M„p and M„„.„g—in addi-
tion to the phenomenological scale Mp„„,„. [The
grand-unification-theory (GUT) scale Mo„T is not an
independent scale: Existence of chiral fermions in

four dimensions requires six-dimensional gauge fields
to have nontrivia1 vacuum expectation values, so that
Es or SO(32) is spontaneously broken at M„~.] It
will be shown that realistic unified string theories do
not allow for hierarchies between these scales. In-
stead, one should have

~GUT ~comp ~str ~Pl

in any realistic superstring model. Implications of (1)
on superstring model buildings are discussed at the
end of this paper.

Let us assume for a moment that contrary to (1),
AI p « Af„,. In this case physics for energies
between M„p and M„, would be describable by a
ten-dimensional field theory, namely, by an N = 1 su-
persymmetric gauge theory coupled to supergravity
(energy increases to the left):

(superstring) (d=10, N=1 supergravity) (d=4 field theory).

Note that it is not assumed that the gauge group is

E8 Es or that the string is heterotic or that the six-
manifold Q is of Calabi- Yau type.

Let us consider quantum effects in the ten-di-
mensional theory. Their magnitude is controlled by

g~oA and K&OA, where g&0 and K&0 are coupling con-
stants of gauge and gravitational sectors, respectively,
and A is the cutoff; the dependence on A is explicit
since the theory is not renormalizable. For sufficiently
high A quantum corrections become large and we can
no longer expect the behavior of the quantum theory
to resemble the classical behavior. While our
knowledge of strongly interacting ten-dimensional
field theories is severely limited, our experience with
four-dimensional theories suggests several alterna-
tives.

(1) Quantum corrections never become large if the
theory is effectively cut off at some scale
A (& Ao= min(g&o', Kto' ); above A the theory is
replaced by a different one. A four-dimensional ex-
ample of such behavior is provided by the P theory of
weak interactions that becomes a gauge theory above
M~. Since there are no renormalizable field theories
in ten dimensions, one must replace the d = 10 super-
gravity directly with a string theory. Hence, this alter-

! native corresponds to M„,« Ao.
(2) The spectrum of a strongly interacting theory

may form Regge trajectories, with light particles corre-
sponding to classical fields, but heavy particles having
no classical analogs; the Regge slope o.' should be
0 (Ap). If d = 10 supergravity actually behaves in this
way, and if its massive states match those of a super-
string theory, that would imply that supergravity is a
low-energy manifestation of superstrings. In this case
M„,= Ao. Alternatively, massive states of strongly
coupled supergravity may not resemble superstring ex-
citations (e.g. , Regge trajectories may be nonlinear).
If this indeed happens, then quantum supergravity
cannot be reconciled with superstring unification.

(3) Finally, a strongly interacting quantum theory
may be so unlike its classical (or weakly coupled)
counterpart that there is no correspondence between
their spectra. A four-dimensional example of such
behavior is provided by QCD. Obviously, quantum
supergravity that behaves in this way cannot be recon-
ciled with a perturbative string theory. Unfortunately,
nothing is known about nonperturbative string theory,
and so we are left with a loophole in our proof. How-
ever, even the low-energy behavior of quantum super-
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gravity behaving in this way should be very unlike that
of the classical theory, so that we cannot use the latter
to study spontaneous compactification of the extra six
dimensions. Thus, although this case is not rigorously
proven to be inconsistent, it cannot be used for the
building of unified models, since we would not be able
to analyze them with currently available techniques.

It is concluded that a consistent superstring model
should have

g, 0 & M„„and K,0 & M„„.3 4 (2)

Now consider coupling constants of the four-
dimensional theory. For gauge symmetries which are
not broken by the compactification, their gauge fields
are constant on Q; the same is true for the d = 4 gravi-
ton. Thus, given the volume of Q, we can compute g4
and K4 in terms of the ten-dimensional couplings as
follows:

4&3
g4 = g10zvIcpmp~ K'4 = K10Mcomp (3)

(M„p is normalized such that the volume of Q is
M,, p). Combining (2) and (3) together we arrive at

~, ~ O((M.. ./M„, )'),

Mpi ~ 0 (M„„/Mcomp ).
We see that if M„p « M t then 0.4 « 1 and
M t « Mpl. Note that the powers of M„„/M„, in-
volved in (4) are so large that it does not take a large
hierarchy between M„, and M„p to impose a ridicu-
lously low upper limit on 0.4. For example, M„,

1OMcp p would require n4 & 10 !
Formula (3) involves classical, i.e. , tree-level cou-

plings. In a quantum theory it should be interpreted as
a relation between effective (running) couplings as
evaluated at M„p. Since M„p is also MGUT we
should interpret 0.4 as 0.GUT and use conventional
renormalization-group analysis to compute the latter
from the low-energy gauge couplings. Given A&co
=0(100 MeV) and MoUT~Mp„o. oUT cannot be
made lower than 0 (,0, ) even if allowance is made for
an extended color group at intermediate energies.
Hence, a realistic model should have M„~„/M„,
& (», )'i = 0.46, which is clearly inconsistent with

the assumption of M„„«M„,. Therefore, that as-
sumption must be wrong and realistic unified string
modeis must have M„„—M„,.

A slightly modified version of the above arguments
should be used if the compactification of six extra
dimensions proceeds in stages. For example, two of
the six dimensions may be compactified at some scale
M, below the compactification scale M~ of the other
four. In such a case one should use a six-dimensional
field theory for energies above M, and below Mc.
The same arguments that gave us (4) before now yield

u4 & 0((M, /M„„) (Mc/M„, ) ) with the result that
M„„/M, & 0 (I/Qng„, ) & 10 even if Mc is as big as
M„,. Thus, while we may have a substantial differ-
ence between M„, and the lowest compactification
scale M„we cannot have a large hierarchy between
the two.

Now let us prove the other part of (1), namely, the
relation between M„, and Mpi. In the type-I super-
string theory M„, is related to the ten-dimensional
couplings as g10 —M,„Gand K10 M t, G, where G
is the dimensionless string coupling. Taking (3) into
account we see that G —g4(M„,/M„„) and K4

Gg4/Mug|. , 1.e., Mqt|. Mp, g4G and M„p —Mpl
x g4 G2 . Combining this with the limit
g4 & (M„~/ M„,) & 1 we arrive at g4 & G & 1 and

0 (g4' )M„& M„, & 0 (g4) Mp],

0 (g4 )Mpl & M„p & 0 (g4 )Mp&.
(5)

If we allow for reasonable numerical factors, (5)
should be interpreted as M„p —M„,—10' -+ ' GeV.

In the heterotic case, expressions for g10 and K10 in-
volve equal powers of the string coupling G. There-
fore, Msiz gio/K to = g4/K4 =g4Mpl. Specifically,
Gross et al. give us g10=2~10 in the string units.
String units are defined such that o. = —, , if we define
M„, as the mass of lightest massive string excitation,
then in string units M„, =8. Hence gto=KipM„„/J2,
g4 = K4M„,/ J2, or n4 =M„,/Mpi. Here n = 4 is the
tree-level gauge coupling normalized such that the E8
(or D,6) Lie algebra has roots of length J2; comparing
this with the usual normalization of Q.GUT we find
O'GUT = 20'4. Thus,

M&i&= Mpl(o'oUT/2) = (1.5—5) && 10 GeV, (6)

since most supersymmetric GUT's have 0.03 & 0.GUT
& 0.3.

What are the implications of (I)? First of all, we
can no longer analyze the physics of spontaneous com-
pactification in terms of the conventional d = 10,
N = 1 supergravity Lagrangean, or the anomaly-free
Lagrangean of Ref. 2. In order to make this point ob-
vious, note that integrating out the heavy string modes
results in operators of arbitrarily high dimension. The
relative magnitude of these operators is controlled by
powers of iLi,/M„„where iLi, is the energy scale of a pro-
cess under consideration. The energy scale of the
compactification is of course M„~; when M„p/
M„,= 0 (1), higher-dimensional operators are no
longer small and have to be taken into account. The
only consistent way to do so is to ignore the d = 10
field theory altogether and to study superstrings in
nontrivial backgrounds. "Equations of motion" that
determine the shape of Q and its size can be obtained
from the requirements of the conformal invariance of
the world sheet.
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In the case of M„~((M„, preservation of N = 1

supersymmetry in four dimensions required Q to be
Kahler and Ricci flat, i.e., to be a Calabi-Yau mani-
fold. The proof does not hold for M„p M t and
there may be supersymmetric solutions that cannot be
continuously deformed into the flat ten-dimensional
space. Unlike Calabi-Yau manifolds, such solutions
may allow for the dynamical breaking of supersym-
metry without destabilization of the vacuum.
Whether such solutions actually exist and whether
they yield realistic four-dimensional theories remains
to be seen.

From the four-dimensional point of view the most
important aspect of (1) is MoUT Mpi —well above
conventional GUT scales. An immediate implication
of a high GUT scale is slow proton decay: As long as
MGUT) 10' GeV, proton's lifetime is longer than
about 103 yr. (It is assumed that proton decay is not
controlled by an intermediate mass scale, " since that
would make the decay unrealistically fast. ) Thus, uni

fied string theories predict a proton decay rate that is too
slo~ to be experimentally observable at present.

Finally, apart from its immediate implications on
proton stability, a high GUT scale is a constraint on
superstring model building. Going through the list of
Calibi-Yau —based models of Ref. 11 and comparing
phenomenological values of Mo„T with (1), one sees
that the latter favors models A4 [SU(3)c SU(3)L. U(1) ] and B2 [SU(3)c SU(2)L S SU(2)it
S U(1) ] with extended flavor group and excludes

models Cl and C2 [SU(4)c S SU(2)L U(1) )]
with extended color group. Minimal extensions of the
standard model [SU(3)c S SU(2)L U(1)y

. . ] have MoUr= 10' GeV and their status vis

a vis (1) -cannot be determined without further
analysis. ' Of course, different gauge groups might be
favored by (1) if the internal manifold is not of the
Calabi- Yau type.
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One has to consider numerical factors in (I) as well as

higher-loop corrections to renormalization-group equations
for M~UT, the latter are especially important for the four-
family models.
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