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Continuum Dissolution and the Relativistic Many-Body Problem: A Solvable Model
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Any attempt to describe bound states of three or more Dirac particles, or of two or more such
particles in the presence of an external potential, must take into account the problem of continuum
dissolution: A Hamiltonian which involves only the sum of free Dirac Hamiltonians for the parti-
cles plus local interactions will not have normalizable eigenfunctions because of the mixing of
positive- and negative-energy states. A simple model is constructed to illustrate the validity of this
"folk theorem, " first noted by Brown and Ravenhall in 1951.

PACS numbers: 03.65.Ge, 11.10.Qr, 11.10.St, 31.30.Jv

Hn(l ) = n; p;+P, m + V,„,(r;) (Ib)

is a one-body Dirac Hamiltonian and

Ve-e = ~~i'r, (1c)i(j
is the electron-electron Coulomb interaction. Hoc has
been much used in the past as the starting point for
the treatment of relativistic effects in atoms. Howev-
er, Hoc is afflicted with the problem of "continuum
dissolution": It has no proper (i.e., normalizable)
eigenfunctions because V, , has nonzero matrix ele-
ments between positive- and negative-energy eigen-
functions of the Hn(i ).' There has been some reluc-
tance to accept this "folk theorem, "which until a few
years ago was not widely known. In view of the impor-
tance of the question it may be useful to try to remove
any doubts concerning this matter, which is of
relevance not only for atomic physics but also for nu-
clear and particle physics. The purpose of this note is
to present a simple model, which has all the essential
mathematical features of HDc, but which can be used
to demonstrate the point at issue in an explicit
manner.

With spin ignored, consider first a one-body

The Dirac-Coulomb Hamiltonian for W electrons
moving in an external potential V,„,(r) is defined by

Hnc ——Q,.Hn(i) + V, „ (la)

where

momentum-space Hamiltonian H, (1), acting in a
space of two-component wave functions p(1), given
by

~a(» =Pi~a(pi) +Pi"'~a,
where E, (p, ) = (m, + pi)' and

1 P 1 0
P&= p 1 P& = 2i (I+Pt)= p ()

~

(2a)

The operator U, is a separable potential of the form

U, =g, iu, ) (u, i

or, equivalently,

with u, (p) a bounded and rapidly decreasing function
of p . A study of the eigenvalue problem

H. (1)y(1) = E q (1) (2c)

shows that for E ~ m„H, (1) has improper eigen-
functions of the form P„(pt)x+ (1), where the spatial
factor is a scattering-state wave function with asymp-
totic momentum k, and for E ~ —m the improper
eigenfunctions are pure plane waves of the form
5(p& —k)X (1);here

1 0
x+(1)= (), x (1)=
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Provided that g, & 0, there is also a proper (normaliz-
able) eigenfunction of the form @,(pi)x+(1) with
eigenvalue E,', in the interval 0 & E & I, . Using
standard techniques one can show that E,' is the
unique solution of the equation

—(1/g. ) = (-.I(E.—E)-'I-.)

= Jt dpI~. (p) I'/[E. (p) —E]
Thus, apart from the presence of only one bound
state, the spectrum of H, (1) has the same character as
that of Hn(l): continuous for E & m, and E & —m„
discrete in the interval 0 & E & m, .

The spectrum of the sum Ho of two such operators,

H, = H. (1)+H, (2),

be set equal to zero. Since

Ube +=-gb~b(P2)f (Pi).
where

f(p )=( I@ )

d P2+b (P2) 4' —+ (Pl i P2) i

Eq. (8b) yields the relation

0-+ (pi. P2) = &/D,

with

&= U0++(Pi P2)+gbf(pi)~b(P2),

for all values of pi and p2 such that

(9)

(1Oa)

(lob)

is similar in character to that of the sum
Hn(1) +Ho(2): It is the whole real line, with a sin-
gle bound state

0(1, 2) =@,(p&)@b(pz)x++, (4)

with the operator U acting only on spatial coordinates;
it need not be further specified at this stage. It is
straightforward to show that with

H =Ho+ V, (6a)

the eigenvalue equation

Hp(1, 2) = Ep(1, 2)

does not have normalizable solutions.
To see this, write P in the form

/=@++X+++@ +X +

+@~ X~ +@ X

(6b)

substitute into (6b), and take the scalar product with
X++ and with X +. This yields a pair of coupled
equations which may be written in the form

(E —E, —U, —Eb Ub)$++ = U@ +,

(E+E,—Eb —Ub)@—+ = U@++.

(8a)

(8b)

The functions @+ and @ are decoupled and may

of energy EO=E'+EI,', embedded in this continuum.
Here I have introduced the abbreviation

x„=x„(1)x,(2).
The states degenerate in energy with po include those
of the form 5(p& —ki)@k,(p2)x +, with k& and k2

satisfying the condition ED+ E, (kt) —Eb (k2) = 0.
Consider next an interaction V between "1"and"2" which mixes positive- and negative-energy con-

tinuum eigenfunctions of Ho. A simple choice is

01 10
I'=piP)+'U, p&= 1 Q P2 Q ()

The integration over the singularity at p2 such that
D =0 is taken to be a principal value, but another
choice such as an i e prescription will not change the
conclusion. From Eqs. (loa) —(lod) we see that for
D&0 the function @ +(p&,p2) is completely deter-
mined by @++ and the choice of integration path.

Now examine the behavior of @ + in the neighbor-
hood of the region D =0. One may convince oneself
that the numerator function N does not vanish identi-
cally on the surface D =0, for any choice of E. It fol-
lows that the integral

(@ +i@ +),= Ji Ji dp& dp [2X /Di' (ll)

diverges like 1/e as e 0. Hence, regardless of how
the function @ + is defined in the D =0 manifold,
the norm of Q + will be infinite. Since the spinors X„
are orthogonal, we have

(lie) = (0++ i@++& + (@-+i4-+). (12)

so that the norm of p itself is infinite for any choice of
E, even if the norm of @++ is finite.

This completes the proof. The equation for @++ is
still complicated even for simple choices of U, so that
in this sense the model is not fully solvable, but as the
above analysis shows there is no need to have an ana-
lytic form for @++ to illustrate the point in question.
Finally, if there are only two particles and no external
field the problem disappears because of momentum
conservation. For the example at hand, the dangerous
denominator then has the form, in the c.m. system,
D = E+E, (p) —Eb( —p), which reduces to E in the
equal-mass case, but which has no zeros even in the

D =D(P1.P2~E) =E+Ea(P/) —Eb(P2) &0 (10c)

On substituting the form (loa) into (9) and solving for
f (p&) we get

f(p&) = ~1 —gb(»ID 'l~b) i

(1od)
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general case provided that the binding energy does not
exceed 2m&.
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For example, any attempt to study relativistic effects in a

three-body bound state such as the triton with a Hamiltoni-
an which is the sum of three free Dirac Hamiltonians plus a
local interaction between the nucleons is bound to founder,
as would an analogous attempt to study such effects for the
proton, considered as a bound state of three quarks.
Configuration-space Hamiltonians obtained from quantum
field theory invariably involve positive-energy projection
operators surrounding the interparticle potentials, so that
continuum dissolution is avoided.

One way to do this is to consider the case U= gP Pb,
where P, and PI, are projections onto the bound states @,
and @b, respectively, and to study N for small values of g,
when @++ may be approximated by P, Pb.

1035


