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Occupancy-Probability Scaling in Diffusion-Limited Aggregation
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A continuous-time random-walk theory of diffusion-limited aggregation yields perimeter occu-
pancy probabilities. Scaling relates the fractal dimension D to the cluster-tip occupancy probabili-
ties. These agree with the analytic probabilities near cusps of a lattice-symmetric array of traps. On
a two-dimensional square lattice D = 3, whereas D =2 for the Eden model, and D =

3 for the
q=2 dielectric breakdown model. D is not universal: D = —„ for the two-dimensional triangular
lattice. The square and triangular lattices bracket (+ 2.5'/o) Meakin's large off-lattice simulations
(D = 1.71).

PACS numbers: 82.70.Dd, 05.40.+j, 64.60.Cn, 68.70.+w

The irreversible aggregation of colloids and aero-
sols2 is often rate limited by diffusion of the particles
to the surface of the aggregate. Similar dendritic pat-
terns arise in chemical precipitation from a supersat-
urated solution or upon crystallization from a supersat-
urated melt. 4 The multibranched aggregates so formed
have been attributed to short-wavelength growth in-
stabilities inherent in these diffusion-limited pro-
cesses.

Witten and Sander have devised a lattice model
which simulates such diffusion-limited aggregation
(DLA): A cluster is grown by successive accretion of
random walkers to perimeter sites. This DLA model
is sufficiently simple as to be amenable to numerical
simulation. These computer experiments have
established scale invariance for the clusters and have
characterized them by a Hausdorff (fractal) dimension
D.

Witten and Sander argue against an upper critical
dimensionality for DLA. Several conjectures s at-
tempt to relate D to the Euclidean dimension d in
which the cluster is embedded. While inconclusive as
to establishing D, renormalization-group arguments
suggest that DLA is in a universality class distinct
from both equilibrium lattice animals and the unre-
stricted random walk. This Letter addresses the
theoretical questions of universality and the Hausdorff
dimension of DLA clusters.

We first reformulate DLA as a continuous-time ran-

dom walk (CTRW). ' Our formal solution for a given
cluster yields the perimeter occupancy probabilities.
We utilize this probability distribution to generate
DLA clusters, without simulating the entire lattice
random walk.

Scaling identifies D from the occupancy probability
for the maximally extending portion of the cluster.
The DLA cluster is thus characterized not by its com-
plicated random interior but rather by the simple
growth of its perimeter. We argue that the occupancy
probabilities for the unscreened DLA cluster tips may
be obtained from occupancy probabilities for similar
tips of regular (lattice-symmetric) clusters. The fun-
damental feature of the growing boundary is its cusp
structure; this feature is entirely reproduced by the
simpler geometry. Application of the analytic occu-
pancy probabilities for a square to DLA on a two-
dimensional square lattice yields D = —, ; we similarly
obtain D =

4 for a 2D triangular lattice.
For specificity, consider a 2D square lattice. Let

R (s, t) be the probability (per unit time) for a random
walker just to have arrived at a site s at time t. Let
p(s, s', t) be the joint probability (per unit time) both
that the time interval between successive arrivals is t
and that the displacement that occurs is from 8' to s.
We consider an intermediate stage where the lattice
contains X contiguously occupied sites. We distin-
guish perimeter sites p C II, which are perfectly ab-
sorbing traps, from all other lattice sites, which possess
nearest-neighbor transition rates W:

0, 8'&ll,
Q(S, S,t) =

gr(g + g )
—4wT

t s, s'+ax s, s'+ay s')Il,
where a is the lattice constant. The Laplace transform of R (s, t) satisfies

R (s, u ) = X p(s —s', u )R (s', u ) + 5. . .
s'f II

with an initial site so for the random walker. Formally, "
R (s,u) = G(s —so, u) —X [G(s—p, u) —5, ~]R (p, u),

p E II

(2)
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where the Green's function for the perfect lattice is given by

= 1 cosm H„cosn 0~
G s sp tI = d0» de~ 1+ (1/2o-) (cosO„+ cos8~)

' (4)

with o- = 1+u/4 W and s —so ——ma x+ na y. Morita's
recursion relations' facilitate use of these lattice
Green's functions. Evaluating (3) for a perimeter site
p, we have

G(p —so, u) = g G(p —p', u)R (p', u). (5)
p'c II

The probability that the (N + 1)st random walker ulti-
mately lands at p is given by P (p) = P (p, t

~) =R (p, u 0), and so we need only invert (5)
in the limit u 0. Thus the CTRW exactly solves the
DLA growth problem: Given a cluster, we obtain the
probability for the next random walker to occupy each
perimeter site.

We have incorporated this exact solution into an al-
gorithm for generating DLA clusters, without simulat-
ing the entire random walk. Our specific realization of
the random walk is accomplished by inverting
R = C (p), where R is a random number and C (p) is
the cumulant of P(p). In this way, we iteratively
build up the cluster; an example (N = 150) is shown
in Fig. 1. The method becomes unwieldly for larger
clusters, because of the matrix inversion of (5), the
matrix dimensions being proportional to the number
of perimeter sites. ' Also shown in Fig. 1 are the
probabilities for subsequent occupancy of the perime-
ter sites. We emphasize that while our clusters are not
large, this method provides the additional information
of the occupancy probabilities, which, in the usual
technique of brute-force simulation, can only be
achieved by many realizations at each stage of the
growth.

We evaluate D for our clusters from the number of
occupied sites within a radius r about the center of
mass: N„,(r) —(r/a)D. For the square lattice we
find D = 1.7, consistent with the largest simulations.
Algebraic behavior obtains for N & 20.

Our solution for the occupancy probabilities
motivates a scaling argument for D. As the cluster in-
terior is screened by its exterior branches [screening
length g~], interior perimeter sites have negligible
probability of subsequent occupancy. Consistent with
this screening, the DLA cluster cannot be "fully
developed" to its tips: Near the tips, the cluster has
fewer occupied sites than it would were it fully
developed to its nominal radius ro ——N' a. As it is
fully developed only within a radius r = r 0

), it must extend further, to a distance'4 r+~~)

& ro( ) (Fig. 2). In what follows, we use only that
rot~), gt ), and r+( ) scale similarly with N, which scal-
ing is guaranteed by self-similarity.

We now show that the occupancy-probability density

pz (r) determines D. Given an N cluster, the probabil-
ity that the (N+1)st random walker will land at the
outermost portion of the cluster [the annulus at r+( ) ]
1S

, (~)

P,„=Jt, , p~ (r) dr,

in which case the cluster grows: r+ +'~ = r+ + a. If
the (N+1)st random walker lands deeper within the
cluster [but still in the edge region r ( ) & r & r+(~) ],
the cluster does not grow: r+ +' = r+ . Combining

2 1

2 2
2 3

4

FIG. 1. A cluster (1V = 150) grown according to the
CTRW algorithm. Shown also are occupancy probabilities
(in percent) for all perimeter sites with P(p) & 0.005. Ap-
preciable occupancy probability occurs only at the tips of the
cluster; the interior is screened.
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as predicted.

these alternatives,

For large N,

dr+I I /dN =P~,„(N)a. (7)

The growth of the cluster is thus driven by the occu-
pancy probability of the tips. If particles are added at
the tips, the cluster grows; if particles are added to the
interior, the cluster does not grow. %'ith cluster
growth, the occupancy probability for the next random
walker is altered; otherwise the next random walker
experiences essentially the same perimeter of traps.
Hence (7) also self-consistently expresses the change
in occupancy-probability density as particles are added
to the cluster. Since r+ —N' a, (7) and the diver-
gence of p~(r) at r+ determine D.

As we require p~(r) only at the tips, the intricacies
of the random, ramified cluster interior are
irrelevant —all the growth takes place at the tips. We
thus may utilize any object possessing the same cusp
structure as a DLA cluster. This is the fundamental

(b)

FIG. 2. (a) Schematic of the number of occupied sites
N„,(r) within distance r from the center of mass. The clus-
ter is "fully developed" [N„,(r) —(r/a) I for r & r
with a lower-density "edge" region for r & r ( r+ . A
cluster with no edge region ~ould extend to a nominal ra-
dius rot~~. All growth takes place in this edge region. (b)
Schematic of the occupancy probability density p~(r) in the
edge region. No growth occurs for r & r ' p~(r.) =0.
p~(r) is singular at r+, reflecting maximal growth probabil-
ity at the tips. Inset: Two possible random walkers, one
adhering near a cluster tip (r+t ' ), and the other adhering
deep within the edge region (r ).

feature of our approach to the probability scaling: D
does not depend on the cluster's random, irregular
structure but rather on ho~ it gro~s. We can thus uti-
lize a regular object with the symmetry of the
lattice —for the square lattice, a square with sides
2L, —i.e. , we consider a random walker in the presence
of a square array of absorbing traps. We compute the
occupancy probabilities as a function of distance hs
away from the corners of the square.

For t ~, the random-walk diffusion problem
reduces to Laplace's equation with perfectly absorbing
walls. This is equivalent' to the electrostatic problem
E= —O'P of a conducting square held at @=0 with a
conducting circle at infinity held at @= 1. The proba-
bility density,

p (r) = IE(r) 1/Jt„ IE(r) I», (8)
is normalized over the perimeter II of the square.

The electrostatics may be solved exactly via confor-
mal transformation, E~ —1/cn(, where the variable (
is given implicitly by

—iL E 1
z =x+Iy = zn(+ ———( +L. (9)E —K/2 K 2

Here cn$ and zn( are Jacobi elliptic functions, and K
and E are the usual complete elliptic irltegrals, all of
modulus k = 1/J2. Near the tips (Ss 0), the proba-
bility density (8) diverges as

(E —K/2) L
J2~L 125s

(10)

We assert that the scaling of the probability density
near a square-lattice DLA tip is reproduced by that of
the square near a corner,

2 ~(e) —2/3(r (e) r )
—t/3
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normalized over the screening length (( ). We verify
this assertion below (Fig. 3). With use of (11) in (6),p,„—(tt/() / . Substitution into (7) gives N
—(r/a), i.e. , D = —', for 2D DLA on a square lat-

tice.
We verify the consistency of using (11) to obtain

the singular behavior of the DLA probability density
near the cluster tips. Figure 3 displays P,„(N) as the
cluster of Fig. 1 is grown. Even for such small clus-
ters, P,„—( —N . Similar scaling (P—N o 39) is observed by Meakin'6 in averages over
many (105) simulations of large clusters (N —5
x10 ).

We remark that (8) may be trivially extended,

p (r) = [E(r) I "/„I„IE(r)l~ ds, (12)

to yield D = 2 for the Eden cancer model' (7) = 0) and
D = —', for the q=2 Brown-Boveri dielectric break-
down model' on a 2D square lattice.

We have investigated the lattice dependence of the
above results. The random-walk problem on a 2D tri-
angular lattice can also be solved, where we utilize a
hexagonal array of traps to obtain the probability den-
sity near a DLA cluster tip,

3 ~(N) —3/4( (iv) )
—1/4 (13)

Use of (13) in (6) and substitution into (7) gives
D = —'„and P,„—N 3 '. The results for fourfold-
(D = —', ) and sixfold-coordinated (D = —„) lattices
bracket and are within + 2.5% of the latest' numerical
results (D = 1.71) for DLA without a lattice, where we
expect averaging over coordination.

Finally the random-walk problem on anisotropic
fourfold-coordinated lattices (2D oblique lattices with
arbitrary angle of inclination p) can also be solved by
conformal transformation. Near the sharp corner,

p/v (r ) —[7r/(2n —p) ]g ) "(r+~) —r )" ', (14)

with x = n/(2n —P). In this case, D = (3n. —P)/
(2m —p); while nonuniversal, D is stringently bracket-
ed: 1.50 & D & 1.67. Numerical simulations on these
anisotropic lattices will provide a strong test of the
theory.

In summary, we have presented a CTRW reformula-
tion of DLA. Our solution yields, at each stage of the
growth, the perimeter occupancy probabilities of the
random walker. Growth occurs predominantly at the
cluster tips, and is controlled by the occupancy proba-
bility P,„of these maximally extending tips. The
scaling of P,„determines the Hausdorff dimension D
of the cluster, and may be obtained by use of the

singular part of the probability density for a regular ob-
ject with the same cusps as exhibited by the DLA clus-
ter tips. We find D = —,'for DLA on a 2D square lat-
tice and D =

4 on a 2D triangular lattice, thus evincing
nonuniversality. We have verified the predicted scal-
ing, I',„—N, for the square lattice.

We thank J. C. Gray for assistance in the numerical
generation of the clusters.
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