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Spin-Glass State of a Randomly Diluted Granular Superconductor
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A randomly diluted lattice of Josephson tunnel junctions is used as a model to generate a repli-
cated Landau-Ginzburg field theory describing the properties of diluted superconductors near the
percolation threshold. The model predicts Meissner and Abrikosov phases and a spin-glass phase
with frozen currents, a nonvanishing Edwards-Anderson order parameter, and power-law decay of
correlations of the magnetic field.

PACS numbers: 74.50.+r, 74.40.+k

Superconductivity in disordered granular materials
near a percolation threshold exhibits novel properties
in the presence of an applied magnetic field. These
materials consist of superconducting islands embedded
in a nonsuperconducting host and are coupled by
means of Josephson tunneling of Cooper pairs or prox-
imity effect. Such systems have received considerable
theoretical' and experimental attention. ' Recent
numerical studies have suggested that disordered sys-
tems in the presence of a sufficiently strong magnetic
field may freeze into a state in which the condensate
wave function exhibits spin-glass-type order among
the superconducting grains. 5 In this Letter, we exam-
ine the properties of a randomly diluted granular su-
perconductor near percolation in the low-temperature
limit, and discuss the conditions under which a transi-
tion to a thermodynamic state of spin-glass supercon-
ducting order may occur. This is done from first prin-
ciples by means of an n 0 replica field theory for the
randomly diluted Josephson-junction network. The
mean-field phase diagram of this theory (Figs. I and
2) has the familiar Meissner phase and an Abrikosov
vortex-lattice phase. In addition we have demonstrat-
ed the existence of a "glass" phase which is the analog
of a spin-glass in random magnetic systems: The con-
figurationally and thermally averaged condensate wave

function [(p) T], is zero whereas the Edwards-
Anderson order parameter [i(P) ri ], is nonzero.
The glass phase is characterized by complete penetra-
tion on average of the applied magnetic field but in ad-
dition by a random distribution of frozen-in Josephson
currents leading to fluctuations in the magnetic field
which decay as a power law with distance. The transi-
tion from the Abrikosov to glass phase at zero tem-
perature occurs at a magnetic field Hg corresponding
to approximately one quantum of flux per typical loop
of the diluted Josephson network in the Skal-
Shklovskii —de Gennes node-link picture of a percolat-
ing network. For a single isolated loop in which the
superconducting coherence length is short compared
to the loop perimeter there are the Little-Parks oscilla-
tions in the induced supercurrent as a function of ap-
plied field. Fluctuations in the sizes of these loops in a
disordered network lead to damping of such oscilla-
tions. 5 Near the percolation threshold, where these
fluctuations are most dramatic, frustration produced
by the interaction of loops of different areas leads to
the glass phase.

We consider a replicated model for a granular ma-
terial in the presence of a magnetic field in which the
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FIG. 1. Mean-field phase diagram as a function of tern-
perature T, applied magnetic field H, and Josephson bond
occupation probability p near percolation threshold p, exhi-
biting normal, Meissner, glass, and Abrikosov (A) phases.

FIG. 2. (a) Phase diagram for fixed applied magnetic field
H, showing spin-glass (S.G.), superconducting (S.C.), and
normal (N) phases. (b) Same for fixed concentration of su-
perconducting grains above percolation threshold p, .
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phase H„of the condensate wave function in a grain at
site x interacts with a neighbor at x' by the Josephson
coupling:

H = — g K, cos(0 —0,—A, ),X, X

(x,x')

where

where A is the vector potential, and @0
——hc/2e is an

elementary flux quantum. Summation is taken over
all nearest neighbors on the d-dimensional cubic lattice
with lattice constant a, and disorder is introduced
through the Josephson energy E, which is set equal

to E or zero with respective probabilities p and I —p.
This model is valid for grain sizes of order of or

smaller than both the bulk superconducting coherence
length and the London penetration depth for the

f —0,[Z~], = Dyke

grains so that amplitude fluctuations in the condensate
wave function and magnetic field within a single grain
may be neglected.

The thermodynamic propeties of this system are
governed by the configuration-averaged Helmholtz
free energy I' = —ka T [lnZ„]„where the square
brackets with subscript c ( [ ],) denote a quenched
average over all possible realizations of intergrain
Josephson coupling and

Z„=JtD0„'exp[ —H'/kaT]. (2)

The above average may be carried out with the aid of
the replica procedure

[lnZ~ ], = lim ( I/n) ln [Z~ ],.
n 0

A generalization of the continuum (a 0) field
theory introduced by Stephen9 for the randomly dilut-
ed resistor network leads to an effective replica Hamil-
tonian 0, for the granular superconductor near a per-

! colation threshold p, :

fdxHr= XJ, 4k(x)["k ~1('7 A k ) ]9—k(x)
k~o 40

+ —X J „q„(x)llk (x)p „, „,(x), ci=a /4d.1 ~dx 2

ki, k2
&0

(4)

Here, summation is over all nonzero n-component
vectors k= (kt, k2, . . . , k„) in replica space with in-
teger components k . Functional integration is over
the continuum order-parameter fields pk(x) which
have expectation values corresponding to various mo-
ments of the XY order parameter exp [i H(x) ]:

and an integration over A (x):

[Zn]

= JtDA [Z~],exp[ —gJtd xg ('7xA ) ], (7)

where angular brackets denote an average with respect
to H, and angular brackets with subscript T (( ) r)
denote an average with respect to the original unrepli-
cated Hamiltonian with a particular configuration of
bonds. The Hamiltonian, Eq. (4), is simply the
gauge-invariant generalization of that considered by
Harris and Lubensky' in the context of the randomly
diluted LY model in which

rk= (p, —p) + bTk + 0 (T ), T = kaT/K, (6)
in the low-temperature limit. Here, b is a positive con-
stant which depends on the bond occupation probabili-
ty p. Magnetic field fluctuations can be included in
this model by the addition of the magnetic energy term

where g = (8m. pokaT) ' and po is the bare magnetic
permeability of the composite. We will refer to the
models with and without electromagnetic fluctuations
as model I and model II.

The vector potential is conjugate to the current den-
sity J(x) so that currents and current correlation func-
tions in model I are determined by responses to the
external vector potential A (x). Thus the thermally
and configurationally averaged current [(J, (x)) r], is

(J; (x)) = —kaT(@o/2m a )5ln[Z&], /5A; (x).

Of particular importance is the response of this current
to changes in AP. Introducing the spatial Fourier
transforms J; (q) and A, i'(q) of the current and vector
potential, we define y;i(q) = 5(J, (q))/5Ai&( —q)
which is related to fluctuations in J; via

(q) = 5 &[5, E, —(k&T) i(J(q) Ji( —"q)) r], —(kaT) (1 —5 &) [(J(q)) r(Ji( —q)) r]„
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ek ——p, —p + bTk + (mp, oHa2/2. d@o) iSki, (10)

where Sk ——g" &k . For T ) 0, the lowest eigen-
values are associated with the k= (1, 0, . . . , 0) and
(1, —1, 0, . . . , 0) modes, respectively. At T = 0,
e& p p is degenerate with a11 modes for which
iS„i = 1 and e» 0 0 is degenerate with all modes
for which Sk ——0. In this limit, the LY order parameter
if/& 0 0 exhibits long-range order for applied fields
0 ( Hg where

p, oHg(v'= 2d@0/m (p )p, ),

and the percolation correlation length gv is given by
(v/a = Ip, —p I

" with v= —, in mean-field theory.
However, modes for which Sk = 0 (of which the
Edwards-Anderson order parameter (Pt t 0 p)
or [(e' ) T(e ' ) T], dominates at finite temperature)
are unaffected by the applied field H. We, therefore,
identify the line (11) with a transition from macro-
scopic superconductivity to spin-glass order. At finite
temperature and fixed 0 ) 0, the surfaces
ei p p=0 and e& & p p=0 determine respec-
tively the transitions from the normal to the Abriko-
sov and spin-glass phases whereas the intersection of
these two surfaces defines a line of multicritical points
where the superconducting, spin-glass, and normal
phases meet [Figs. 2(a) and 2(b)]. It is straightfor-
ward to verify that nonlinear terms in the expansion of
H, preserve the decoupling of the spin-glass fields
(S„=O) from those with S„aO. That is to say, order
in the Edwards-Anderson field induces order in all
modes for which Sk= 0 but not those for which Sk~0.
The interaction terms affect only the precise location
of the phase boundary.

1016

where E, is a condensation energy and where we used
[ (J, (q) ) T ],= 0 in the phases of interest to us. The
helicity modulus studied by others is simply
Yi = lim~ 0[y;i" (q) —

y;J (q)]. In model II, ylp(q)
becomes 5(J, (q))/5(A, &(q)) and contains the usual
local field corrections" to Eq. (8). It determines the
A-field correlation function

D„'t'(q) = (5A,.(q)5A,P( —q))
2

= I,T 5.~5,, +y,, t'(q)4' P,p

where 5A, (q) = A, (q) —(A; (q) ) and where the
right-hand side is the inverse matrix in both the nP
and ij indices.

An approximate mean-field phase diagram as a func-
tion of T, p, and applied magnetic field H for this sys-
tem may be obtained by consideration of the locus of
points for which the quadratic part of H, develops zero
eigenvalues. In the mean-field approximation, we set
V' x A= p, pH in each replica and obtain for each k the
lowest eigenvalue at finite temperatures:

—
t 0(p —p, )«T- o), (13)

above which the Meissner state becomes unstable to
the formation of an Abrikosov flux lattice (Fig. 1).

(ii) We have shown that the Landau-Ginzburg equa-
tions admit vortex solutions of the form

ok=a, 'fk(r)e' (14)

Here r and 0 are cylindrical coordinates measured from
the vortex core and m is a nonzero integer giving the
number of flux quanta contained in the vortex. For

m [skismall r, fk(r) —r " revealing that vortex cores re-
tain spin-glass order at sufficiently low temperature.

(iii) For applied fields H & Hg, the energetically
favorable solution to the Landau-Ginzburg equations
is that in which complete flux penetration occurs

To obtain the detailed properties of these phases
within mean-field theory, we have solved the Landau-
Ginzburg equations resulting from saddle minimiza-
tion with respect to both pk and A of Eq. (7). We re-
strict our attention to solutions which preserve replica
symmetry, i.e. , A = A. In what follows, A and P„are
understood to represent equilibrium expectation
values of these fields. We have identified three dis-
tinct types of solutions to these equations apart from
the trivial one Qk= 0, V && A = p,oH describing the nor-
mal phase:

(i) For sufficiently weak applied fields (H ( H, &),
as will be clarified shortly, the energetically favorable
solution is that for which A=O (Meissner effect in
London gauge) and p„(x) is spatially uniform and pre-
cisely that of a dilute LY ferromagnet. As in usual su-
perconductors, this is accompanied by screening sur-
face currents which decay on the scale of the London
penetration depth A. , from the sample boundary. In
the London gauge, the phase of pk remains uniform
and the supercurrent J is given by

2

J= —p, A; p, = C2 lim p, o
—g S„ iyki, (12)'mc '

n p fl k~p

where C2 = (da ) '2ma /h and p, is the macroscopic
su per fluid density. The presence of the field A
suppresses order in those modes for which Sk~0 so
that at the glass transition p, vanishes. In the weak-
field limit (A 0), the implicit dependence of pk on
A may be neglected and it may be shown that the
divergence of P as p p, is governed by the conduc-
tivity exponent: X (p —p, ) . This equation implies
that A /( —Ip —p, i

t ' "i is always large near
threshold' for d ~ 3 (t = 3 and v= —,

' in mean-field
theory and t =1.85 and v=0.85 in 3d). Thus suffi-
ciently close to p„ the granular medium behaves like a
type-II superconductor. It follows that there is a criti-
cal field

H, ] = (@0/477k. ')in(X/( )
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('7xA= poH) and pk
——0 unless S„=O. In the glass

phase, we have shown that

7 g
P (q) = 8,, lim —g k'l tl „l'= 8„7s,'n-0 n S =0

k

(15)

so that Y„=0. Equation (8) implies that
——[l(J(q)) Tl2], must be negative. Equation (15)
does indeed predict a negative value for yg as can most

!
easily be seen by considering the vicinity of the spin-

glass to normal transition where only the n (n —1) or-
der parameters pt t 0 o contribute to the sum. As
in the normal and Meissner phases the net macroscop-
ic supercurrent in equilibrium [(J)T], is zero. How-
ever, unlike these more familiar phases, the spin-glass
state is characterized by a randomly oriented distribu-
tion of frozen-in supercurrents as revealed by the
nonzero value of yg. These frozen supercurrents lead
to long-range fluctuations in the equilibrium magnetic
field in the glass phase. Using SB(q) =i qxBA(q) and
Eqs. (9) and (15), we obtain

(8B (q) 8BP( —q)) = [(18B(q)I') T], +(I —& &)[l(&B(q)&rl'], =47rpokaT(& &+47rpol7, lq '). (16)

Thus, in the glass phase, there is flux penetration with
a uniform nonzero [(B)r], everywhere but with
strong local fluctuation in 8 leading to power-law
(x td 2)) decay in both [(8B(x) 8B(0))T], and
[(8B( )) (&B(0)) ],.

We mention finally that for the results described
above, we have only considered solutions to the
Landau-Ginzburg equations which do not break replica
symmetry. ' Although broken-symmetry solutions
will not alter the qualitative features of the phase dia-
gram discussed here, as in more traditional spin glasses
they are important in distinguishing equilibrium from
nonequilibrium properties of the glass phase. '

From an experimental point of view, samples of in-
dependent Josephson-coupled grains of the size of the
zero-temperature superconducting coherence length
are most likely to be produced in a controlled manner
in two dimensions. It would be of interest, however,
to study well-characterized three-dimensional compo-
sites where the predictions of our mean-field theory
become more accurate. Since the supercnducting or-
der parameter is experimentally inaccessible, we feel
that the strongest signatures of the glass phase are
likely to be in its dynamical properties. As in magnetic
spin-glasses, ' nonergodic behavior is likely to be man-
ifest in differences between field-cooled and zero-
field —cooled samples. If nonequilibrium metastable
states are important, a conductivity experiment may
determine whether the macroscopic superfluid density
which we identified as being zero in the glass phase
(assuming replica symmetry) exhibits remanence
when this phase is entered from the Abrikosov phase.
Dynamical properties such as ac conductivity may also
probe the nature of barriers separating metastable
states and the associated distribution of relaxation
times.
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