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Induced Chem-Simons Terms at High Temperatures and Finite Densities
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The CP-nonconserving portion of the gauge-field effective action for an even number of left-
handed SU(2) fermion doublets, with nonzero chemical potentials p, , is calculated to leading order
in the inverse temperature, T . It is shown to be ig, (p/T. ) 8, '[3], where W[A] is the Chern-
Simons topological mass term. This result is also shown to be a consequence of the U(l) L anomaly
at zero temperature, but with p, &0. Because of the i in front of the Chem-Simons term, this pro-
duces magnetic screening only if p, is complex.

PACS numbers: 11.15.Bt, 11.3G.Er

At high temperatures, a relativistic quantum field
theory becomes effectively three dimensional. ' 4 In
constructing the effective three-dimensional theory
one first writes the thermal partition function as a Eu-
clidean path integral in which the imaginary time vari-
able, ~, runs from 0 to P. At high temperatures, fer-
mionic and nonstatic bosonic modes —those which
depend upon r—acquire masses proportional to the
temperature, T, and decouple, leaving behind effective
interactions for the remaining static fields. Ordinarily,
the only effect of the fermionic and nonstatic bosonic
modes is to renormalize the effective theory5 without
introducing any qualitatively new interactions.

In this Letter, we discover an exception to this rule:
We find that certain P- and CP-nonconserving effects
in four-dimensional gauge theories at high tempera-
tures can induce a topological term —proportional to
the Chem-Simons secondary characteristic class —in
the action for the effective three-dimensional gauge
fields. The Chem-Simons term, W' [2 ], has been
studied extensively in the context of three-
dimensional Yang-Mills theory, and it has been sug-
gested s that it would play a role in the effective
three-dimensional Yang-Mills theory at high tempera-
tures. It has also been shown that %[A] can be in-
duced by fermions in three dimensions. %e show
here for the first time, however, that the Chern-
Simons term can be induced in a physically realistic
system at high temperatures. In addition to being P
and CP nonconserving, 8'[2] is invariant under infin-
itesimal gauge transformations, but changes by an in-
teger, n, under a homotopically nontrivial gauge
transformation with winding number n.

Three-dimensional Yang-Mills theory with a
Chem-Simons term has another important and well-
known property: If the coefficient in front of the
Chem-Simons term is n then the gauge fields become

massive, with the square of the mass proportional to
o.2. Since we are interested here in the effective
three-dimensional theory for the spatial (magnetic)
components of the gauge field at high temperatures,
the Chem-Simons term produces magnetic screening
(magnetic mass) for a & 0 and antiscreening for

& 0. Although the fermionic and nonstatic bosonic
modes are known to produce an electric mass, or in-
verse screening length (Debye screening) for the time
component of the static gauge field, A o, no such mag-
netic mass has been seen in perturbation theory. The
existence of a magnetic mass is considered highly
desirable as it would (1) serve as an infrared cutoff
which would help eliminate the severe infrared infini-
ties encountered in a perturbative expansion of the ef-
fective three-dimensional Yang-Mills theory' and (2)
force magnetic flux to be confined (as long as flux is
conserved, V 8=0, as it is in the effective theory
discussed here) which it is believed would enhance
monopole-antimonopole annihilation at high tempera-
tures, thus offering an alternative solution to the
monopole problem in the early universe. "

While we believe that many different types of P and
CP nonconservation may generate a Chem-Simons
term, we restrict ourselves to P and CP nonconserva-
tion induced by coupling of the gauge fields to chiral
(left- or right-handed) fermions with finite chemical
potentials —at finite density. Chiral fermions do not
conserve P and C but conserve CP. To introduce CP
nonconservation, we include a chemical potential, p, ,
which is the Lagrange multiplier for the conserved
particle-number operator gt =Jd x ply QL (we ig-
nore nonconservation due to instantons, because these
effects are negligible in all realistic theories'2). Since
0L is odd under CP, and since p, , which is just a
number, does not transform under CP, our theory ef-
fectively violates both P and CP symmetry. For p,
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real, p, gL is also odd under CTP. It must be stressed
that we have introduced the chemical potential in the
ordinary way. The effective nonconservation of CP and
CTP occurs in the thermal partition function and does
not imply that CP or CTP symmetry is violated in the
underlying particle interactions.

Our investigations reveal that when P, CP, and CTP
symmetries are all effectively violated —as they are
when a real chemical potential is included —the coeffi-
cient, n, of the Chem-Simons term is imaginary, giv-
ing 0.2 & 0: antiscreening. If we effectively violate
only P and CP symmetry, however, n is real and we
get magnetic screening. Unfortunately, in the particu-

lar system under study here, we can restore CTP in-
variance and thereby obtain magnetic screening only
by continuing the parameter o.—which in our case is
proportional to i times the chemical potential —to an
unphysical value —an imaginary chemical potential.

For definiteness, we consider a four-dimensional
theory with an even number of left-handed fermions
in the fundamental representation of SU(2)L, interact-
ing with SU(2) gauge fields —as in the standard model
of the weak interactions. Such a theory is free of both
triangle anomalies, '3 and of the nonperturbative Wit-
ten SU(2) anomaly. '4 The thermodynamic partition
function may be written as a Euclidean functional in-
tegral

Z = „dA dP dQ exp —
Jr dr„d x —,

' trF + X,.Q L (i8 —gA + Ip;y ) QL,

p = 1/T, A4= —
2A4a „F4"=84A" —8"A4 —Ig [A",A" ], Qt. =

2 (I+y5)4,

over gauge fields which are periodic in Euclidean time, A (0, x) = A (P, x), and fermion fields which are an-
tiperiodic, P'(0, x) = —P'(P, x)—i runs from 1 to N, N even; a, are the Pauli matrices. Integrating out the fer-
mion fields we obtain an effective action for the gauge fields:

I[A]=J „d x —,
' trF +X,. lndet(ij —gA+ip, ;y ),

where

lndet(i8 —gA +ip~y ) = lcp[A]+I'[A],

with lc'p odd under P and CP, and I' even. For simplicity of notation, the superscript i will be suppressed until the
end of the calculation.

We now use perturbation theory to calculate Izp at high temperatures to leading order in 1/T. In perturbation
theory

t p
Icp[A] = —,'„dr„d xA,"(x,r)„e '"'"Gg~g" (r)A t", (r)

+ —,
'
J d x A "(x,r)J e ' '+' G,4b", '(r, s)A t", (r)A, (s)+ O(1/T), (2)

G~&"(r) = ( —2g )e4" ~r'tr J p4Sp(p;p, )S~(p;p, ) + O(1/T),
2 p

(3a)

G~&~ (r, s) = ( —ig')e4" 'tr ' ' '
J p4Sp(p;p, )Sp(p;p, )Sp(p;p, )+ O(1/T),

P
(3b)

where G4t," and G4t" are the CP odd portions of the t-wo-point and three-point Green's functions, ipS&(p;p)is the,
propagator at temperature T and chemical potential p, , and A (r) is the Fourier transform of A (x). The integral f
in (3) is actually a combined sum and integral [1/( —iP) ]g„jd3p/(27r)3 in Euclidean space. It has been proven
that all of the infinities at finite T, p, can be eliminated by renormalization of the theory at T = 0, p. = 0. Therefore,
to extract the finite portions of our graphs, we must separate our calculation into T=O, p, =0 and Te0, p, e0
parts. To do so, it is easier to continue r to the real-time interval —~ & xp & oo, in which case the sum
[1/( —iP)]g„becomes an integral. The propagator ipS&(p;p, ) will denote either the real or the imaginary time
propagator; we will make clear which we are using.

Observe that G4" (r) at zero temperature (and p, &0) must vanish because the only P-odd Lorentz-invariant
function of r with the correct dimensions is e4" t'r rt =0. At finite temperatures, however, Lorentz invariance is
broken by the heat-bath vector u4 which we have chosen here equal to (1,0,0,0). This opens the possibility that
G"" is proportional to e4" t r up. Still, with zero chemical potential, the propagator (in real time),

i 27r 5 (p')
@ST(p;0)=, +
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is a function of the absolute value of u and therefore G"" cannot depend on the sign of u, i.e. , cannot be propor-
tional to ei"" i r ui. Only when we include a chemical potential can G4" be nonvanishing, since the real-time pro-
pagator with p, a0 becomes'5'6

IpSp (p; jx ) =
p+i e

+2 ~( 2) ~(p u) + &( —p u)
&lp'ul —p) + y ep(lp ul+p~ + l

In calculating (3) using real-time propagators, one cannot simply multiply the propagators (4) because one en-
counters undefined double and triple delta functions. This problem can be circumvented by using a 2x 2 matrix
fo™alism,' or by inserting a mass m and taking derivatives of S&(p;p, , m) with respect to m as suggested in Ref. 2.
Using either method, and performing the integrals in (3), we find (for the real-time quantities)

G""(r)= ig e~" r tr
' + O(1/T),ab (5a)

I„=I(&/T) [A ]+o(1/T),
~ 2

W[A'] = e'J" tr [A F~k
—i , eAI'AJ Ak], —

16m.2
(7)

where W[A'] is the Chem-Simons term. In three
dimensions, the coupling constant is e = ~T, and for
sufficiently high density we expect p, / T to be of order
one.

The Chem-Simons term in (6) may also be derived
in Minkowski space at zero temperature for p, &0. At
zero temperature, we cannot neglect fermion masses
as we did at high temperatures. Instead, we include
the right-handed components of the fermion fields and
give the fermion doublets masses, m;. The term
g&p, 'Q ~y Q' can be interpreted as the coupling of an
external U(1) gauge field B/" = (p, ;, 0, 0, 0) to the
U (1) current J~ = p 'y" P'. In the presence of the
SU(2)I gauge fields, this U(1) current is not con-
served, because of the U(1)L anomaly. As a conse-
quence, (J") does not vanish. By expanding in
powers of the momenta p over masses m;, we may use

G"" = —ig' e"" tr
' +O(1/T)

gm. 2

Before proceeding to insert (5) into (3) and then
(2), we can further simplify Icp[A] by writing it as a
function of static gauge fields only: gauge fields which
do not depend on Euclidean time. This approximation
is justified at high temperatures, since in a mode ex-
pans1on,

A&(x, ~) = Q„A~(x)exp[i(2m /nP) ]r,

one finds that all the modes other than the static
mode, n = 0, acquire masses of order T. Except for
coupling-constant renormalization, these can be ig-
nored in the effective three-dimensional theory which
is valid for length scales i )& 1/T. [We shall use
g = g( T, p, ) to denote the renormalized coupling con-
stant at temperature Tand chemical potential p, .]

Letting A" (x, ~) At%' (x, 0)/4 T —= A'"(x), and
using (5) in (3) and (2), we find

(5b)

t

a well-known result'7 for (J") in the presence of
SU(2)1 gauge fields. We find

Icp=„I d x ,' 8/" (J„')—

d p(-;) W[A]+O(, /m, ),
where in Minkowski space we include an integral over
xp—the field A (xp) is the four-dimensional field,
with dimension T, and W[A] is given by (7) with
e g. This proves that the Chem-Simons term is
present even at T = 0, and its existence is a conse-
quence of the U(1)L anomaly. However, it is only for
high temperatures that we can ignore gauge fields
which are ~ dependent and discuss p,f dxp( —i) W'[A]

(p, /T) W[A'] as a mass term in the context of an
effective three-dimensional theory.

As mentioned above, the Chem-Simons term (7) is
not gauge invariant, but changes by n under a homo-
topically nontrivial gauge transformation with winding
number n, n integer. Requiring the phase exponential
of the action to be gauge invariant leads to a quantiza-
tion condition: i(1/2' T) ~g;p, '~ = n. Unless the p, '

are imaginary, the quantization condition cannot be
satisfied. However, we are not convinced that it must
be satisfied here. In introducing the chemical poten-
tial, we have ignored particle-number —nonconserving
effects due to instantons. This is a justified approxi-
mation since these effects produce decay rates which
are negligibly small in all physically interesting
theories. ' It may be that ignoring the tunneling ef-
fects of four-dimensional instantons is equivalent to
restricting the effective three-dimensional theory to a
single hornotopy class. If this is so, we should not be
surprised to find that our quasiequilibrium effective
theory is not invariant under large gauge transforma-
tions. We have also ignored possible terms in the ef-
fective theory which would not be seen in perturbation
theory; these might restore gauge invariance.
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The generation of a Chem-Simons term in the ef-
fective three-dimensional theory at high temperatures
and finite densities is a physical effect (for p, real)
which should have measurable consequences. It is not
entirely clear to us what these consequences are,
although we speculate that the antiscreening (n2 ( 0)
in the effective theory is a signal of instability. To see
that we are discussing a potentially significant physical
effect, however, let us calculate the magnitude of the
coefficient of the Chem-Simons term, ~o. ~, during an
intermediate stage in the evolution of the early
universe. The magnitude of n, a dimensionful quanti-
ty, is a measure of the screening (n & 0, p, imag-
inary) or antiscreening (n ( 0, iu, real) at high tem-
peratures. Comparing the result of Ref. 7 to Eq. (6),
we learn that ~n~ = (g /47r ) ~g;p, '~. For (n~ to be sig-
nificant we must have a large particle-antiparticle
asymmetry. One place where such an asymmetry may
exist is in the present universe. Available upper
bounds on neutrino-antinueutrino asymmetry and on
muon number give chemical potentials which go like T
times some number of order one: p, —T. If a CP
no neo nserving interaction at the grand-unification-
theory scale was responsible for this asymmetry, then
at some later time when the universe was at a tempera-
ture 109 GeV, we may expect the interactions which
lead to particle-number nonconservation to slow to a
point where particle number becomes approximately
frozen. Then we may apply the relationship p, —T. At
109 GeV, ~n ~:—(g /47r2) x 109 GeV:—5 && 106 GeV
which is much greater than the electroweak scale, 100
GeV, and should produce a significant effect —we
have used g2(109 GeV) =—,'o .

We have also demonstrated that if P and CP sym-
metries alone are violated, real magnetic screening
would result —although in our case, this requires an
unphysical imaginary chemical potential. One might,
of course, obtain partial magnetic screening by giving
p, or g2 an imaginary part (by g, we do not mean
~g ~

). It is plausible, however, that some truly physi-
cal effect, which only violates P and CP symmetries
might also induce magnetic screening. Such an effect,
with p, = 0, cannot generate the Chem-Simons term in
perturbation theory, because the propagators would
not depend on the sign of the heat-bath vector, u .
Magnetic screening for p, = 0 might still be generated
by nonperturbative CP-nonconserving effects such as
by instantons in a 0 vacuum. It might also be generat-
ed in the presence of background fields with E B~0.
Finally, we offer the wild possibility that the infrared

instability of the effective three-dimensional gauge
theory might itself cause a spontaneous breakdown of
CP symmetry with the resulting generation of a mag-
netic mass.
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