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Quantum Gravity in Two Dimensions: Exact Solution of the Jackiw Model
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The two-dimensional theory of gravity proposed by Jackiw is exactly quantized in the open case.
The Wheeler-DeWitt equation is solved in closed form with and without cosmological constant.
The theory has no degree of freedom and the unique wave functional reflects the classical aspects
of the solution.
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Lower-dimensional theories of gravity have attracted
a growing interest recently. ' This is not surprising in
view of the apparently insurmountable difficulties en-
countered in the quantization of the gravitational field
in four dimensions. In order to get insight into these
difficulties, it is then natural to turn to simpler models
obtained by the lowering of the number of dimen-
sions, which still share interesting features with their
four-dimensional counterpart. A similar step has
proved very useful in the study of Yang-Mills
theories. 2

In two dimensions, the Riemann tensor is complete-
ly determined by the curvature scalar t2~R. Hence, the
natural analog of the vacuum Einstein equations with a
cosmological constant A is'

"&R —2A =0. (1)
In order to go to the quantum theory, it is desirable

to derive the equation (1) from a local action principle.
Since this equation is invariant under arbitrary changes
of space-time coordinates, the action should preferably
be also invariant. This requirement of general covari-
ance appears necessary if one wants to mimic the
four-dimensional theory of gravity.

The only variational principle which possesses this
property seems to be the one proposed by Jackiw, 4

which is adopted here. The action reads

S[g.p, @]=„d'xi g@(&"R —2A—), (2)

where @ is a scalar field. Because of this extra field,
the theory has superficially zero degrees of freedom,
and not "minus one, " which renders its quantization
more interesting.

The equations for the field @, obtained by variation
of the action (2) with respect to the metric com-
ponents, are equivalent to

V Vp@+ Ag p@ = 0, (3)
where V stands for the space-time covariant deriva-
tive. Two of these equations, namely, the gop equa-
tions, are constraints on the initial data. The remain-
ing g~~ equation is truly dynamical.

As a result of general covariance, the Hamiltonian
derived from (2) is very similar to the Dirac-
Arnowitt-Deser-Misner Hamiltonian of four-dimen-
sional gravity. 7 9 It is a linear combination of the
above-mentioned constraints (rewritten in terms of
the canonical variables):

gl = —Ppg' +2(g ' y')'+2A@g' —0 (4a)

gi i= —2P'g —&g'+p@'=0, (4b)

and, hence, it vanishes weakly, as indicated. In (4), g
is the spatial metric g~~, P is its conjugate momentum,
whereas p is the momentum conjugate to @. As usual,
spatial derivatives are denoted with a prime.

If the spatial sections are open, which is the case
considered in this paper, the equations of motion (1)
and (3) must be supplemented by appropriate bound-
ary conditions at spatial infinity (this is the standard
viewpoint). These asymptotic conditions are not en-
tirely dictated by the theory itself, but cannot
nevertheless be chosen at will. Indeed, they must ful-
fill at least two consistency requirements: (i) They
should not be contradictory with the equations of
motion, i.e., they should be compatible with at least
one solution. (ii) They should make the Hamiltonian
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generator of time translations well defined. '
Because the choice of the proper boundary condi-

tions involves some subtle points, it is discussed in
some detail here. Let us first consider the case of a
vanishing cosmological constant, and then state the
results in the general case.

When A is zero, the general solution to the equa-
tions of motion (1) and (3) reads, in Minkowskian
coordinates,

g),~
= 'ri) ~

= diag (,+ ), (Sa)

@= a~X~+ b.

The numbers a„and bare integration constants.
From (5b), one learns two things. First of all, the

field equations admit not one, but many different
solutions. These can be parametrized by the invariant

C= —a a"= —'7 @V"$ (6)

when a„~0 and by b when a~ = 0. (When a„~0, b
can be set equal to zero without loss of generality. )
Second of all, when a~NO, the scalar field qb superfi-
cially breaks the Lorentz invariance. "

I will adopt in this note boundary conditions which
guarantee that the theory has exactly zero degrees of
freedom, i.e. , that the solution of Eqs. (1) and (3) is
unique up to a coordinate transformation. This is
done by freezing of C to a given value and is motivat-
ed by the fact that the "ancestor" of the theory,
namely, three-dimensional gravity, ' has no degree of
freedom in the open case. Accordingly, it seems legiti-
mate also to enforce this property after dimensional
reduction.

Moreover, since the scalar field @ superficially
breaks the global Lorentz invariance, I will not try to
work with boundary conditions which contain all solu-
tions (5b) compatible with a given C. Rather,
boundary conditions are adopted which are themselves
not invariant under asymptotic Lorentz rotations, in
which a„has only one nonvanishing component. '
These read explicitly

A=O, g 1,

C=a &0, p 0, P —a.

(7a)

The precise rate of approach of the canonical variables
to their asymptotic form will not be needed here. Let
us insist that in (7), a is a fixed constant which charac-
terizes the model, so that one has actually many dif-
ferent theories, one for each value of a. In contrast,
the constant o, depends on the slice under considera-
tion and, hence, is not fixed. For simplicity, it has
been assumed that C & 0. The other cases are treated
in a similar way.

One can repeat the above analysis when the cosmo-
logical constant does not vanish. The appropriate

boundary conditions turn out to be

1
A =

2 & 0, g cosh2n, @ sinhn, (8a)

2 1
p ——sinhn, P ——,(8b)R R'

1 X& 0, g 1, @ cosh —sinn, (9a)
R R

p~0 P —+ coso;
R

(9b)

where I have restricted, for simplicity, the value of the
constant C, which is now given by

C = —7„@'7~@—A@2, (10)
to be 1/R . (Again, the other cases are treated in a
similar fashion. )

It is easy to check that with the boundary conditions
(7)—(9), the generator of time translations JNgi dx,
with N 1 for A ~ 0 and N cosh(x/R) for A & 0,
is well defined without the need to be improved by the
addition of appropriate "surface terms" at infinity. '

Accordingly, the associated "charge" is zero, which
means that no "energy" is associated with the scalar
field @, even when it does not vanish.

In the approach to quantization where one quantizes
without fixing the gauge —and this appears to be the
only interesting one here since if one fixed the gauge
and only kept the true physical degrees of freedom,
nothing would be left —one imposes the equations (4)
as operator constraints on the physical states, 9

4 14) =o, (»)
In the metric representation, the states are functionals
of g(x), @(x),and the momenta become

P(x) =—,p(x) = — . (12)h

i 5g(x) '
i 5@(x)

The equations (11) are then called the "Wheeler-
DeWitt equation. "3 It turns out that these equations
can be solved exactly in two dimensions, contrary to
what seems to happen in three (and more!) dimen-
sions, where only incomplete' or approximate'
results are known.

The difficulties with the equations (11) as they
stand are at least twofold. First of all, there is a
factor-ordering ambiguity in both ~ and ~t because
the constraints involve products of noncommuting
variables. Second of all, since~contains the second
functional derivatives 52$/5g(x)5$(x) evaluated at
the same space point, one expects that ill-defined ex-
pressions like 5(0) will occur in (11), which will ac-
cordingly need an appropriate regularization.

Now, contrary to what happens in ordinary field
theory where the divergences in the Hamiltonian are
associated, for instance, with the zero-point energy of
the vacuum fluctuations, there does not seem to be
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any good physical reason for the occurrence of 5(0)
here, which appears to be a pure gauge effect. Indeed,
the present model is purely kinematical and one feels
accordingly that the true physical "zero-point energy, "
say, should be zero.

One way of regularizing of the quantum equations
with this observation in mind is to replace (before go-
ing to the quantum theory) the Hamiltonian con-
straints by equivalent constraints which are solved for
the momenta p(x) and P(x). In that representation
of the constraints, one simply avoids 5(0) since no
second-order functional derivatives 5 /5P (x)5g (x)
arise in the equations. There is, in addition, no
factor-ordering problem, and hence one gets at the
same time a prescription for the ordering of the
Wheeler-DeWitt equation in its original form, which
must be handled in such a way that the quantum
theory based upon (11) is equivalent to the one de-
fined below for which the quantum constraints are
consistent.

Solving the Dirac-Arnowitt-Deser-Misner con-
straints of general relativity for the momenta conjugate
to the "pure gauge'* field components is an old goal of
the canonical approach to quantum gravity. ' That it

—(P'g)'+ [(@'g '/')'+ A/2]'= 0, (13)

which straightforwardly yields

P g
—1/2[(@~g—1/2)2+ Ay2+ C]1/2 (14)

In (14), C is the (given) integration constant intro-
duced above [Eq. (10)]. To go from (13) to (14), I
have used explicitly the boundary conditions (7)—(9),
and I have everywhere oriented for convenience the
normal to the spacelike slices so that P ~ 0. Other-
wise, one would have to keep track of the sign in front
of the square root in (14) as one moves from x = —~
(where P & 0) and crosses the zeros of P. I have thus
also implicitly assumed that a ) 0 in (7) and that
—vr/2 ~ n & m-/2 in (9).

From Eqs. (4a) and (14), one then gets the momen-
tum pas

can be carried through here is an interesting feature of
the model, which makes its exact quantum resolution
possible.

The explicit transformation of the constraints (4)
proceed as follows. If one multiplies (4b) by P and
uses (4a) to eliminate p, one gets the differential equa-
tion

[(@g
—1/2)2+ A@2+ C]—1/2[2(g —1/2y ) ~ + 2Ay 1/2] (i5)

That the conjugate momenta are completely determined by g(x) and @(x) reflects the absence of true degrees of
freedom. It is straightforward to check that the constraints (14) and (15) imply in turn (4a) and (4b). Hence, one
can take them as the basic constraints of the theory. Let us note at this point that, for a given C, not all configura-
tions g(x), @(x) of the spatial metric and the scalar field can be embedded in the classical (unique) solution of the
field equations (1) and (3). Only those configurations which make P [Eq. (14)] real are classically admissible.

We are now in a position to solve the Wheeler-DeWitt equation, which is equivalent to

5P/5g(x) ig1/2[(+y)2 +Ay2+C]1/2y

5$/5$(x) = —i [(V@) +A/ + C] ' [25@+2AQ]g'/2P.

I have set Vg=g '/2@' and b, $=g '/2(g '/2@')'. '7$ and AP are spatial scalars.
An elementary line integral yields the unique general solution of (16) as

y [g (x), @(x) ] = exp (iS [g (x), @(x) ]},
where S[g(x),$(x) ] is the "Hamilton-Jacobi function"7

S[g( ),@( )]= —2Jl @g'/'(8@+A@) [(V@)'+A@'] '{[('7P)'+A@'+C]'/' —C'/'}dx

—2C"'J (g'/' —1)dx.

(i6a)

(16b)

(17)

(18)
Although superficially noninvariant under spatial
changes of coordinates because of the (infinite) con-
stant 2C' 2Jdx in S, the wave functional is actually in-
variant, for the integral J(dx —dx') vanishes for the
coordinate transformations which preserve the bound-
ary conditions [i.e. , asymptotic translations (A ~ 0) or
identity (A & 0) ].

The solution (17) and (18) is the main result of this
paper. One can eliminate the second derivative of @
from (18) by adding an. appropriate divergence, but
this is by no means necessary.

The solution of the Wheeler-DeWitt equation exhi-
bits a certain number of interesting features. First of
all, one sees that when the cosmological constant is
zero (and with the values of C considered here), the
exponent in the wave functional is real for all config-
urations g {x),@{x) which obey the appropriate
boundary conditions. Hence, these configurations are
equally probable. This reflects the classical property
that all these configurations can be embedded in the
unique classical solution (5a) and (Sb) of the field
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equations. Moreover, they all classically occur "an
equal number of times. " (This number is equal to the
number of isometrics which preserve the asymptotic
conditions, i.e. , to R .)

When the cosmological constant is positive, one has
a similar situation, but the phase S of the wave func-
tional is infinite. This phase can be made finite by the
addition of an appropriate constant for a given value of
n, but not for all of them. Now, n is a measure of
time at infinity [g cosh2(t/R) = cosh2n]. Hence,
one sees that the wave functional is regular on the
spacelike slices which approach a given slice at infinity,
but not for those which asymptotically differ from it by
a finite time translation. This seems to reflect the fact
that t)/Bt is not a Killing vector in the de Sitter case.

When the cosmological constant is negative, all the
classically allowed configurations g (x), @(x) have
equal probability, while those which are classically
forbidden —i.e. , those which lead to an imaginary P
when inserted in (14)—are exponentially damped
(with the appropriate choice for the imaginary part of
S) 18

Lastly, I briefly indicate how the above results can
be extended to the case of closed spatial sections. One
finds then that the integration constant C cannot be
frozen to a given value, but rather is an unconstrained
degree of freedom with a well-defined momentum P, .
Both C and P, have vanishing brackets with the con-
straints and yield a complete set of "observables, "'9
i.e. , here, a complete set of gauge-invariant constants
of the motion. In the quantum theory, one can diago-
nalize either C or P„but not both. The solutions of
the Wheeler-DeWitt equation which diagonalize C are
sin ilar to those described above. It is hoped to return
to this question in the future 20
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