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Predicted Raman Intensities for Bulk and Surface Plasmons of a Layered Electron Gas
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An exact analytic solution for the random-phase —approximation dielectric response including the
surface correction is derived for a semi-infinite layered electron gas with different dielectric media
on either side of the surface. The Raman intensity is calculated. The bulk plasmon line shape
agrees with experiment; conditions for experimental observation of surface plasmons are described.

PACS numbers: 71.45.Gm, 72.30.+q, 73.90.+f

Olego et al. ' observed the bulk plasmon of a layered
electron gas (LEG) by inelastic light scattering from
GaAs- (A1Ga) As heterostructures. This experiment
confirmed the random-phase —approximation (RPA)
prediction2 3 of the bulk plasmon dispersion relation.
By imposing standard electromagnetic boundary condi-
tions at the layers of a semi-infinite LEG, Giuliani and
Quinn4 predicted the existence and dispersion relation
of surface plasmons if the dielectric media outside and
inside the semi-infinite LEG are different. This Letter
gives a microscopic theory for the Raman line shapes
of the bulk and surface plasmons. Our method in-
volves the exact construction of the density-density
correlation function in random-phase approximation
for a semi-infinite LEG with different dielectric media
on either side of the surface. Such an exact solution is
possible because of mathematical simplifications aris-
ing from the layering of the electron gas, and is not

t

available for electron response in more complicated

surface geometries. From this correlation function,
the Raman intensity is calculated. The theory has no
free parameters. The bulk plasmon Raman line shape
agrees well with that observed experimentally by Olego
et al. ' We find a surface plasmon which has exactly
the dispersion relation predicted by Giuliani and
Quinn, 4 and outline experimental conditions under
which it should be observable by Raman scattering.

We use the model of Visscher and Falicovs for a
LEG, which has delta-function-localized electron den-
sity in each plane. The electrons are free to move in
the plane and the electrons in different planes interact
only via the Coulomb interaction. The possibility of
tunneling between two planes as well as of intersub-
band excitations within a plane is ignored. The planes
of two-dimensional electron gas occur at z = id where 1

goes from 0 to ~, and are embedded in a space of
dielectric constant eo for z ( 0 and e for z & 0.

The Coulomb potential energy of two electrons sit-
uated at planes i and m is given by

(e2/e) t [(r r )2+ (1 m)2d2] —t/2+ o [(r r )2+ (1+ m)2d2] —1/2}

where r is the two-vector (x,y). The second term,
proportional to cK = (e ep)/(e+ ep), gives the modifi-
cation due to the image charge. The Fourier transform
of (1) with respect to r —r' is

20

V(q;i, m) = V f(q;i, m), (2a)

Vq
= 27re /eq,

e
—q I t m Id+ n eq—

I t+ m Id

(2b)

(2c)

where q is a two-dimensional in-plane wave vector.
The density-density correlation function is defined in
the usual manner:

D (r, i, t;r', m, t') —= —i ( Tn (r, l, t) n (r', m, t') ),

ioE
3

where n and T are density and time-ordering operators.
At zero degrees, ( ) denotes the ground-state expecta-
tion value. Let D(q, lc,o)mbe the Fourier transform
and D its value in the absence of Coulomb interac-
tion. An exact expression for D has been given by
Stern7 for y=0+ where y is related to the electron
mobility p, by y = e/m'p, . We use a Mermin-
corrected value of Do for finite y to take impurities
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FIG. 1. Dispersion relation for the surface plasmon for
several values of o. . The shaded region is the bulk-plasmon
band and has no surface plasmons inside it. n =0.86 corre-
sponds to vacuum outside and GaAs inside. b —= cosh(qd)
—Do Vsinh(qd).
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into account.

D(l, m) =D BI~+D VX f(l, lt)D(lt, m).
ii=0

(4)

The dependence on q and ~ is suppressed in this notation. To solve this equation, we make the following Fourier
transformation:

D(l, m)= —ge ' e ' D(q„k,), (5)

where q, and k, can assume values 27m/Nd, N= number of planes, n =0, . . . , N 1. (A—t the end, we take the
limit N ~.) We defer to a forthcoming publication9 the long algebra that leads to the final result:

D(q„k,) =D'(q, )8(q„k,)+D'(q„k,),
D (q ) =D /e(qz),

(D')'V[W —B(e" + e ")+ Ce' ' ]
2N. (q, ).(k, )P(q, )P (k, ) Q

P (q, ) = cosh(qd) —cos(q, d),

e ( q, ) = 1 —Do V sinh( qd)/P ( q, ),

3 = G sinh2(qd) + 1+ —,
' ne2~d,

B= H sinh'(qd) + cosh(qd) + —,
' ne'd,

C = G sinh2( qd) + 1+ —,
' o. ,

Q = 1 —G [2+ —,
' (1+e2~") ]+ (H2 —G2)sinh2(qd) + H[ e~d+ 2 cosh(qd) ],

G = [D'V/2N]X, 1/P(q, )"(q, ),

H= [D V/2N]xq e '/P(qz) e(q~)

(6)

(8)

(10)

(14)

(i5a)

(i5b)

b —= cosh(qd) —Do Vsinh(qd). (17)

For very pure samples, y 0+, ImDO 0, and
Imb 0+. The range (Reb

~ ( 1 defines the bulk-

plasmon which is a continuum of energies that a bulk
plasmon can assume for all possible values of q„while
keeping q fixed. The boundaries of the bulk-plasmon
band are b= +1. The lower branch b= —1 corre-
sponds to charge on neighboring planes oscillating out
of phase; the upper branch b = + 1 corresponds to its
oscillating in phase.

The dispersion relation of the surface plasmon is

The first term on the right-hand side of Eq. (6) is the
bulk term, and the second term D' is the surface con-
tribution. These have a clearer interpretation in real
space. Using Eq. (5) one gets6 D~(l, m) —exp( —P~l
—m ~) and D'(l, m) —exp( —P~l+ m~), where P is a
positive number. Thus the bulk contribution depends
only on the distance between the layers, while the sur-
face contribution decays exponentially as one goes
away from the surface. The pole of the bulk term at
e(q, ) =0 gives the well-known dispersion relation for
the bulk plasmon of a LEG. It can also be written as

b = cos(q, d), (16)

given by the pole Q(q, cu) = 0 of the surface term D'.
Notice that Q is independent of the perpendicular mo-
menta q, and k, . The other poles of D', e(q, ) =0 and
e(k, ) =0, describe bulk plasmons with perpendicular
momenta q, and k, and do not interfere with the pole
Q= 0 which lies outside the bulk-plasmon band. 4 In
the limit N ~, the integrals in Eqs. (15) can be per-
formed and the dispersion relation becomes

(b2 —1) l2sjnh(qd) + O„e~ b

+ cosh(qd) (b —ae~") = 1, (18)

where the complex square root is chosen to be the
branch with positive imaginary part. We have verified
by a lengthy algebraic analysis that Eq. (18) agrees ex-
actly with the Giuliani-Quinn dispersion relation. In
particular, because of the factor (b2 —I)'l2, there is no
solution (i.e., no surface plasmon) inside the bulk-

plasmon band. Outside this band a surface plasmon
exists only for q greater than a critical wave vector q',
given by q'd= —in~~~, which is the solution of Eq.
(18) at the boundaries of the bulk-plasmon band,
b = +1. There is no Landau damping of this mode,
and so the width of the surface plasmon is determined
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by y alone. The dispersion relation of the surface
plasmon is plotted in Fig. 1 for selected values of a.

The intensity of the Raman-scattered light as a func-
tion of its energy loss co for a fixed value of in-plane
momentum exchange q is proportional to

I (i0) Xe—(I+ m)dlae —2ikd(™)lmD(q i0 I m)

(19)

Here k and 1/25 are the real and imaginary parts of k„
the complex z component of the wave vector of pho-
ton inside the LEG. For large values of Rem and small
angles of incidence, k, is constant and is equal to
cuoJe. The different factors in Eq. (19) are intuitively
understandable. We have the usual ImD which is
characteristic of processes where the energy is
transferred to electrons by a probe coupled to the den-
sity. The factor exp{ —(l+ m) d/5 j takes into account
the decay of the photon inside the material with decay
length 5. The factor exp{ 2ikd(l —m) ) is a coherence
term which would generate perpendicular momentum
conservation if 6 were infinite, or, in other words, if
there were translational invariance in the z direction.

All the sums can be performed in the expression for
I(co) and an analytic answer can be obtained. In Fig. 2

we have plotted the experimental line shape and the
line shape calculated from Eq. (19) for sample 1 of the
Olego et al. experiment. The experimental curve has
been shifted by 0.2 meV along the c0 axis, and all the
curves have been normalized to have the same maxi-
mum height. Agreement with experiment is good.
For comparison, the intensity given by a naive theory
I(c0) = —ImD /e(q, c0, 2k) is also plotted. This naive
theory, unlike Eq. (13), does not take into account the
broadening of perpendicular momentum caused by de-

N(q, r0) =N tXq&(o) —~0p(q, q )), (20)

where co~(q, q, ) is the bulk plasmon energy. When the
surface contribution is added to l~(cu), a cancellation
of these peaks takes place. For a = 0, perfect cancella-
tion can be verified analytically. For ne0, the total in-
tensity has no structure at co;„andcu,„provided the
surface plasmon is sufficiently separated from the bulk
plasmon band, as is the case in Fig. 3. This shows the
importance of the surface term in Eq. (19). A strict
phase relation A/ =0 or m. for charge oscillations in
neighboring layers (corresponding to cd,„orc0;„)is
needed to give a van Hove singularity but is destroyed
by the presence of the surface. A similar cancellation
has been found in an analysis of surface vibrational
resonances by Stroscio et al. '

The surface plasmon has not yet been detected ex-
perimentally. For the usual geometry with vacuum
outside, the surface plasmon exists only for
q ) 1.7x 104 cm ' for sample 1 of Olego et al. ' To
get a good spectral weight at the surface plasmon, it is
desirable to have high q and small y, i.e., large mobili-

cay of the photon inside the material, and has all its
width due to nonzero value of y. For y 0+, this
theory would give a delta function whereas Eq. (13)
predicts the dotted curve in Fig. 2.

It is interesting to see what I(cu) would look like if
one used only the bulk value of D in Eq. (19). A typi-
cal curve for the resulting intensity I~(cu) is plotted in
Fig. 3. Besides the peak at the bulk plasmon energy, it
has two other smaller peaks at co;„andm, „which de-
fine the boundaries of the bulk-plasmon band for
q = 1 x 105 cm '. These peaks arise from the van
Hove singularities in the one-dimensional plasmon
density of states N(q, i0) defined as
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FIG. 2. Comparison between the experimental and

theoretical line shapes of the bulk plasmon peak in the Ra-
man spectrum. The experiment is from Ref. 1; y=0.3 cor-
responds to a mobility p, = 5 & 10 cm /V. s, used in Ref. 1.
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FIG. 3. Raman intensity 1(ru) with its bulk part Ib(cu)
and surface part I'(cu) shown separately. Peaks in 1~(co) at
the bulk plasmon band edges, co;„andm,„,are cancelled
when I'(co) is added to it to obtain 1(co). The bulk and sur-
face plasmons occur at 7 and 12.2 meV, respectively.
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ty. In Fig. 3 we plot the Raman intensity for
q = 1.0X 10s cm ' and y = 0.1 meV which are experi-
mentally accessible. The bulk and surface parts of the
intensity are shown separately. The surface plasmon
appears at about 12.2 meV.

In a future publication6 we plan further line-shape
calculations for other experimental situations. In par-
ticular it would be interesting to search for the
Giuliani-Quinn surface plasmon below the bulk
plasmon continuum. This occurs if n ( 0, which is
harder to achieve experimentally. Although the
surface-plasmon intensity diminishes for smaller ~a~
or q q", we find that it does not disappear abruptly
when it enters the bulk-plasmon band; a resonance
remains with an intensity enhanced by the van Hove
singularity at the band edge.
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