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Critical Behavior of Three-Dimensional Ising Spin-Glass Model

Andrew T. Ogielski and Ingo Morgenstern
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First results of massive Monte Carlo simulations of the d = 3 Ising spin-glass with + Jbond dis-
tribution, performed on a fast special-purpose computer, are presented. A qualitative change in the
behavior of the system and best fits for the spin-glass correlation length and relaxation time favor
an equilibrium phase transition at T, /J = 1.2.

PACS numbers: 75.10.Hk, 05.50.+q

In this Letter we address the problem of the ex-
istence of a genuine phase transition in the three-
dimensional Ising spin-glass model. There has been
no generally accepted theoretical prediction for the
lower-critical dimension (LCD). After a period of
controversy, however, recent experiments favor a
transition picture. In this situation an insight into the
behavior of the d =3 spin-glass could be provided by
numerical methods. This approach has faced major
difficulties: The randomness of the system calls for
fairly large lattice sizes, and large relaxation times re-
quire an enormous amount of computation to achieve
equilibrium and sample adequately the configurations
in the Monte Carlo (MC) simulations. Earlier numeri-
cal analysis of the d = 3 Ising spin-glass included
transfer-matrix (TM) calculations, 3 and conventional
MC work. The TM method could be applied only to
very small lattices of size 4X 4X L (L ~ 10), too small
to describe correctly the development of spin-glass or-
dering. Previous large MC simulations4 6 could
achieve equilibrium only at high temperatures
(T/J» 1.55), and therefore could be interpreted am-
biguously, either in favor of T, = 0 freezing, 4 ~ or of a
finite T, transition. 4 6 More recently finite-size scaling
for "defect energies" for small lattices by Bray and
Moore7 (23-43) and McMillan8 (23—63) has been in-
terpreted as an indication that T, = J in d = 3. It is
doubtful, however, that such small systems are already
in the scaling regime.

Here we present new Monte Carlo data from simula-
tions which exceed the previous ones by several orders
of magnitude. We conclude that spin-glasses exhibit
an equilibrium phase transition in d = 3. Our result is
based on (1) a qualitative change in the behavior of
the system at T/J = 1.2; (2) the best fit for the corre-
lation length g, i.e. , $~ ~

T T, ~

", and the best f—it for
the relaxation time r, i.e., r~

~
T T,~—

The model is defined by the nearest-neighbor Ising
Hamiltonian

H = —XJ,S„S,—Xh„S„
t

X,X

with random interactions J, distributed independent-

ly on each lattice bond with probability —, for discrete
values + Jand —J. A simple cubic lattice with period-

ic boundary conditions is used, and we discuss the case
of zero magnetic fields. The time-dependent local
magnetizations

(2)

the average correlation function

G(r) = V-'X„(S„S„„)',
and dynamic correlation function

q(t) = V 'X (S„(0)S„(t))

(3)

(4)

have been directly measured. It has been found that
for 323 and 643 lattices the differences in measure-
ments on lattices with distinct bond realizations do not
significantly exceed the sampling errors on a single lat-
tice; therefore a systematic study of spatial correlations
was performed on one 32' lattice, and dynamic correla-
tions were recorded systematically for one 323 and one
64 lattice. Several 163 lattices were examined to
understand qualitatively the finite-size effects.

We began simulations with random initial configura-
tions at high temperature T =5 (we set J = 1). Each
series of measurements at a fixed T was performed for
a time much longer than the longest relaxation time,
and was followed by slow cooling to a slightly lower
temperature.

We know that the simulations exhausted all time
scales from the fact that the equilibrium time correla-
tion function q(t) completely decays to zero —after
averaging over 20 to 200 "histories" [repetitions of
the measurement (4)]. Even at lowest temperatures,
1.25» T» 1.10, we do observe complete reversals of
the ordered lattice; i.e., even below T, we can observe
the decay of q(t) to zero for a finite lattice. Summar-
izing, our simulations were very well equilibrated and
we certainly deal with equilibrium values in our work.
We analyze the development of spin-glass ordering as
follows:

(1) We have observed directly the ordering of the
323 lattices at T= 1.25 in several ways. First, we have
verified that the long-time relaxation at this and lower
temperatures proceeds often via rigid, coherent rever-
sals of the entire lattice (by inspection of the local
magnetizations). Second, we find that at T & 1.20 the

928 1985 The American Physical Society



VOLUME 54, NUMBER 9 PHYSICAL REVIEW LETTERS 4 MARCH 1985

correlation function (3) quickly decays to a constant
value at longer distance (see Fig. 1) . Third, at
T=1.25 and a little below we observe a dramatic
change in the probability distribution P(m„). Above
this temperature the distribution is Gaussian-like and
shrinks continuously to a delta function as time in-
creases. Below T= 1.25 the distribution stays flat until
we reach the time scale of complete lattice reversals.
Figure 2 shows P(m„) for these two typical cases.

(2) The scaling of correlations, G(r)
d+ "g(r/g), which is well satisfied, together

with comparison to correlations on a 163 lattice show
that finite-size effects become appreciable at distances
close to half the lattice size, which are discarded. The
phenomenological three-parameter fit

G(r) = CI [exp( —r/g) ]/r I (5)

works well for 2.0~ T~ 1.325 on a 323 lattice. Best
error-weighted least squares fits for all temperatures
together give C=0.56+0.04 and x =1.07+0.07. Er-
ror estimates for the correlation length g ( T) are
predominantly due to the fitting uncertainty. At
T=1.325, ( is about 10 lattice spacings, which ex-
plains the breakdown of the above fitting procedure.
In this work we do not include a complete finite-size
scaling analysis which requires a substantial amount of
additional data and is therefore beyond the scope of
this report.

In Fig. 1 we plot r'+" G(r) vs r/(. The data lie on a
universal curve if the exponent q = 0. T= 1.10
(below T,) lies on a different branch. For T=1.10,
G(r) tends to a constant at large distances, which
must be subtracted in order to apply a fit analogous to
(5), this time with x close to 0.5—in agreement with
our qualitative picture of a transition.

The growth of ((T) is very well described by the
power law ( —C

I
T T,—I

", with C = 1.00 +0.04,
T =1.20+0.05 and v=1.2+0.1. The attempt to fit
the power law with T, = 0 shows large systematic devi-
ations from the data, with least-squares X2 2 orders of
magnitude larger, and we rule out this possibility (see
Fig. 3).

We also try the fit appropriate for the lower critical
dimension, with g(T) —a exp(h/T ). We find that
this function provides a fit to the data which is quite
good, with the exponent a. = 3.6 + 0.2, and constants
g =0.74+0.05 and 6 =7.4+0.3. We note that for the
nonrandom Ising model at LCD this exponent is equal
to 1.

(3) In order to characterize the average thermal re-
laxation time 7 (T) we use the representation of q(t)
in terms of a distribution of normally relaxing modes:

q(t) =J dr P(r)e
(6)

pOO OOr= J dr'P(r')r'=„dt q(t).
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FIG. 1. Scaling plot rd 2+~G(r) vs r/( (q =0). Univer-
sal curve for 1.325 & T & 1.80, and 32 lattice. Data for
T ( 1.20 lie on a different branch. Inset: G(r) vs r for
T= 1 ~ 10.

FIG. 2. Typical histograms of local magnetic moments:
top, at T = 1.45, after 11.4x 10 Monte Carlo steps and 2784
measurements, the variance q = (I/~)g(S„) =0.002; b«-
tom, at T =1.10, 32.6x10 Monte Carlo steps and 3984
measurements with q = 0.323.
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FIG. 3. Temperature dependence of the correlation length g( T). If T, = 0, the data should lie on a straight line in the right
plot, following Ref. 5.

Rapid increase of relaxation times at low T is very
well described by the critical slowing down
r( T) —C, I T T, I

'"——g' when the fitted values are
C, = 4.5 + 0.5, T, = 1.20 + 0.05, and zv = 6 + 1, giving
a large dynamic exponent z = 5 (Fig. 4). It is noted
that the best fit for T, gives here essentially the same
value as from the correlation length.

Another three-parameter fitting function, r —a,
x exp(b, /7 ), which should characterize the decay of
correlations at LCD with the same exponent o- as the
correlation length and which appears also in the hy-
pothesis of T, =O freezing, 5 can also be fitted to the
data quite well (Fig. 4). It yields o- =4.5 +0.3
a, =4.5 +1, b, =74 +5 in some disagreement with
the analogous fit to g( T). Another often-tried relaxa-
tion-time fit is the Vogel-Fulcher law, 9 r = roexp[AF/
(T To)]. The fitte—d values of the "freezing" tem-
perature lie about To —0.9. We believe this is ac-
cidental, and deviations are expected at still lower tem-
peratures.

It is seen that on the basis of fitting the data at
higher temperatures 1.30 ~ T~ 1.80 above it is rather

hard to distinguish the power-law divergences from
the LCD fit with o. —4. However, we remind that ul-
timately the LCD fitting is inconsistent with the ob-
served decay of G(r) to a constant for T ( 1.20,
which implies that ((T) has to decrease again in the
ordered phase.

Summarizing, we have found that with the best
Monte Carlo data currently available, the development
of long-range order in three-dimensional Ising spin-
glass model can be well explained by an equilibrium
phase transition at finite T, . Neither the freezing, nor
the LCD picture provides a consistent description of
our simulations. A detailed discussion will be present-
ed elsewhere.

After the release of this report, we have received a
report by R. N. Bhatt and A. P. Young, ' where similar
estimates of T, and the exponents for this model have
been obtained from finite-size scaling analysis done for
smaller lattices.

The simulations presented here were done on a very
fast special-purpose computer, designed and built at
AT8rT Bell Laboratories by J. H. Condon and A. T.
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FIG. 4. Growth of average relaxation time ~( T), interpreted as critical slowing down (left), and as LCD exponential growth
(right), for a 643 lattice.
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Ogielski. This machine executes the MC heat-bath al-
gorithm, faster than the Cray-1 supercomputer, on a
variety of random Ising spin systems (spin-glasses,
random fields, bond or site dilution, etc.) and can be
programmed in the C language to perform any kind of
measurements.
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