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Search for a Transition in the Three-Dimensional + J Ising Spin-Glass
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The three-dimensional Ising spin-glass in zero field with nearest-neighbor interactions having a
+J distribution is studied by Monte Carlo simulations for samples of linear dimension L with

3 «L «20. Results for the probability distribution, PL(q), of the spin-glass order parameter are
analyzed by finite-size scaling. Data for T «1.2 are consistent with a conventional phase transition
at T, =1.2+ ', with exponents I =1.3 +0.3 and q= —0.3 +0.2. However, results at lower tem-
perature indicate marginal behavior and suggest that the lower critical dimensional is close to three.

PACS numbers: 64.60.Cn, 05.50.+q, 75.10.Hk, 75.50.Kj

Despite extensive studies, the question whether a
spin-glass transition occurs in three dimensions
(d =3) has remained controversial. Several careful
measurements' of the nonlinear susceptibility for
Heisenberg systems have been interpreted as strong
evidence for a nonzero transition temperature, T„
though they may also2 be consistent with T, =0. How-
ever, apart from some early real-space renormalization
results, 3 calculations for Ising spin-glass models in
zero magnetic field have led4 to the conclusion that the
lower critical dimension (LCD), below which no tran-
sition occurs at finite temperature, is dl =4. (In pure
systems, the LCD for Ising spins is known to be lower
than that for Heisenberg spins. ) Very recently,
though, Bray and Moore5 and McMillian6 have studied
the scaling of defect energies with size for small sam-
ples for the Ising spin-glass with Gaussian nearest-
neighbor bonds in zero field at T=0. They conclude
that T, is finite in d =3, while T, =0 for d =2 in
agreement with earlier work. Extending their calcula-
tion to finite temperatures they estimate T, (in units
of the standard deviation of the bond distribution) and
one of the exponents, v, as follows: T, =0.83 +0.08,
v=3.3 +0.6 for 2 «L «4 (Ref. 5); T, =1.0 +0.2,
v =1.8 +0.5 for 3 «L «6 (Ref. 6). Preliminary
results on a large (L =64) lattice for the +J Ising
model (see below) down to T =1.4 indicated the pos-
sibility of an incipient transition.

Here we investigate the possibility of a spin-glass
transition by Monte Carlo simulations of the d =3 Is-
ing model with a symmetric +Jdistribution. %'e cov-
er a wide range (3 «L «20) and larger sizes than in
Refs. 5 and 6, and are able to determine two indepen-
dent exponents from which all others can be evaluated
by means of scaling relations.

Our main conclusions are as follows. A finite-size
scaling9 fit to the data with T ~1.2 (in units of the
nearest-neighbor coupling) yields a conventional tran-
sition at T, = 1.2 +0 2. The correlation length ex-
ponent, v, is estimated to be v=1.3 +0.3 while 71,
which describes the decay of correlations at T„ is
found to be q= —0.3 +0.2. However, our results for
1.0 ~ T ~1.2 indicate a more marginal behavior and

&(JJ) = l &(Jg —1) +5(J;, +1)]/2. (2)

Periodic boundary conditions are imposed. Most of
the simulations have been performed on the distribut-
ed array processor at Queen Mary College, London.
The program updates 13.5 million spins per second for
L of the form 2 (m =2, 3, 4, . . .) and up to about 9.5
million for the other even sizes. Some data have also
been obtained from the Cray 1S at the University of
London Computer Centre (ULCC). Between 100 and
1000 samples were averaged over for each datum
point, depending on size and temperature.

One quantity of interest is the spin-glass susceptibili-
ty XsG, defined by

X„=L- g,, ((S,S,&,&,; (3)

( . ) T denotes a statistical mechanics average for a
given set of JJ and ( . )J is a bond average. Above
T„XsG for an infinite system varies as (T—T, )
with y = (2 —q) v. XsG is calculated in two different
ways as follows. The first tp Monte Carlo steps per
spin are used for equilibration and averaging is carried
out during the next tp steps. By simulation of two sets
of spins, S;('~ and S;( ~, with the same set of bonds and
no coupling between them, our first estimate of Xso is
from XsG where

The two sets of spins are prepared in uncorrelated
states at the initial time so Xso approaches XsG from
belo~ if to is shorter than the necessary equilibration
time. We also calculate the four-spin-correlation

suggest that the LCD is close to three.
The Hamiltonian for our system is

a= —XJ„-S,S,,
(~J)

where S;= + 1, the sites are on a L x L x L simple cu-
bic lattice, and the J~ are independent random
nearest-neighbor interactions with a probability distri-
bution
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function quantity is

g = (3 —(q4)/(q2)')/2 (10)

and our second estimate, Xso, is given by Xsbz
= xso( tp), which, we find approaches XsG from above
if to is not long enough. A run was only accepted if
the two estimates of XsG agreed. Our longest runs
were for to =220 000.

It is useful to study the probability distribution of
the projection of the spin configurations in the two
sets, defined by

PL(q) =L~ "P(qLt ",L "(T T,)), —(8)

where p is the order parameter exponent, and from
hyperscaling, p/v = (d —2 +q)/2. Consequently, the
finite-size scaling form for xsG is

xsG ——L' ~x(L't"(T T,)). —

Data for xsG are shown in Fig. l. In principle, by
analyzing these results according to Eq. (9), one may
obtain T„q, and v. However, it is more practical to
deal with ratios of moments of Pt (q), such that the
scaling form involves fewer parameters. One such
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FIG. l. &sG versus I on a log-log plot.

where

Q(t) =L dX,.S "(t&—t)S,.'"(t, +t).
Clearly, from Eq. (4), xsG=Ld(q2) where ( ) in-
dicates an average over PL(q). [As L ~, above
T„PL(q) becomes a Gaussian of width L "t2, so that
xsG is independent of L, while below T„PL (q)

P(q), the distribution of overlaps between dif-
ferent "thermodynamic phases, " which plays an im-
portant role in mean-field theory. '0] According to
finite-size scaling Pt (q) can be written as

defined so that 0 «g «I, and above T„g 0 as
L ~. g has the finite-size scaling form

g=g(L' "(T—T,))
with no power of L multiplying g. To our knowledge,
g has not been used before in finite-size scaling
analyses of spin-glasses, though an analogous quantity
involving ratios of the moments of the magnetization
distribution has proved very successful for ferromag-
netic systems. " For conventional transitions with
long-range order below T„curves of g vs Tfor various
L intersect at T, (since g is independent of L at
T= T,), and ratios of the slopes of the different
curves at T, may be used to determine v. We have
tested the usefulness of g for spin-glasses by applying
it to the infinite-range Sherrington-Kirkpatrick (SK)
model, '2 which has a mean-field transition at T, =1.
Figure 2(a) shows the results for various number of
spins, N =32, 128, and 512 (N plays the role of lattice
size), obtained on the ULCC Cray-1S. Although there
are some corrections to finite-size scaling for this
range of sizes (as evidenced by the noncoincidence of
the intersection points), the curves do all intersect,
and errors in both T, and v are no more than 10% (and
as low as 3% in T, from intersection of the two larger
sizes). A similar accuracy would be entirely acceptable
for the three-dimensional (3D) spin-glass.

Our data for g in d =3 are shown in Fig. 2(b) . From
the high-temperature phase, the curves for 4 «L «12
all come together at T =1.2, implying a phase transi-
tion, and all data above T =1.2 scale well with T, =1.2
and an exponent v=1.4, as shown in Fig. 2(c). In
fact, the whole distribution PL(q) appears to have a
size-independent shape at T=1.2 (Fig. 3), with the
scale of q varying as L@" with P/v=0. 36 (so that
q= —0.28), just as expected at T, (see Eq. 8). Thus
our results for T ~1.2 are consistent with a conven-
tional transition with finite exponents at T, =1.2. Fur-
ther, the nonlinear susceptibility exponent y, if we use
y = (2 —q) v, is y =3.2, which agrees well with several
experimental determinations' (perhaps by coincidence;
see, however, Kotliar and Sompolinsky'3).

Ho~ever, unlike the SK model and other systems
displaying a conv'entional phase transition, the data for
g in Fig. 2(b) do not fan out below T =1.2, where we
can equilibrate sizes L «8. This could occur if the
scaling function were very flat for T ( T, (so that size
dependence, though present, is small and lost in the
statistical fluctuations). Such a scenario is not borne
out by the variation of g below T =1.2 [Fig. 2(b)], and
the data do not scale well below T=1.2 [see Fig,
2(c)], except with much larger values of v than for
T ) 1.2. Such behavior would appear consistent with
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FIG. 2. (a) g =[3—(q )/(q2)~]/2 vs Tfor the SK infinite-ranged model for %=32, 128 and 512 spins. 0~g ~1 and
g 0 for T & T, =l as iV' ~. Estimating T, by intersection of curves gives results shown. (b) g for the short-range 3d
spin-glass. At T=1.2, gis independent of size L (for L =4, 6, 8, 12) and remains independent of L (L =4, 6, 8) at T=l.l
and 1.0. (c) Scaling plot for g (see Eq. 11) with v=1.4, which works well for T~1.2, but systematic deviations are seen for
T & 1.2.

a T, =O, but with an exponentially diverging correla-
tion length' as T 0, so that curves for g approach
each other exponentially fast at low temperatures.
This occurs at an LCD (e.g. , 2D Heisenberg and 1D
Ising ferromagnets). However, one would then have
to explain the apparent consistency with a T, = 1.2 [in
particular, the insensitivity of the intersection point in
Fig. 2(b) to size], as well as the much larger variation
of g with Tthan with L below T = 1.2 [Fig. 2(a)].

A different but rather natural interpretation is that
the system at every temperature T ~1.2 is close to cri-
ticality which would, in turn, also imply an LCD close
to d =3. In fact our results are qualitatively of the
form one would expect if there is a phase transition at
a finite temperature, but with no long-range order
below T„as occurs for the 2D XYferromagnet. t5

McMillan's value of v =1.8 +0.5 is consistent with
our fit to the T ~ 1.2 data. However, Bray and
Moore's value of 3.3 +0.6 is much larger, which may
be related to the near marginal behavior we observe at
lower T. Results of recent extensive Monte Carlo
simulations on the +Jmodel by Ogielski and Morgen-
stern'6 on large sizes I. =32 and 64, received since this
manuscript was submitted, also favor a conventional
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FIG) 3. PL(q)/La ' vs qL~" at T =1.2 with P/x =0.36.
Data lie on a single scaling distribution, as expected if
T = 1.2 is a critical point (see Eq. 8).
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transition with T, =1.2 +0.1, v=1.2 +0.1 and q =0
mainly on the basis of T ) T, data, which is compati-
ble with our T ~ 1.2 results, but we find somewhat
different behavior at lower T. Clearly it would be
desirable to have results on larger sizes for tempera-
tures T ~ 1.2, to further investigate the possibility that
d =3 is close to the LCD of the Ising spin-glass.
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