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The inelastic scattering of neutrons by liquid He at 0.2 K saturated vapor pressure has been mea-
0 ] 0

sured for momentum transfers in the range 10 A & Q & 16 A . The observed scattering func-
tion is well described, within statistical uncertainties, by a Gaussian centered at the recoil energy.
The average kinetic energy per atom, obtained from the width of the scattering function, is 8.1+I 3

K.

PACS numbers: 67.50.Dg, 61.12.Fy

Liquid He at low temperatures is a degenerate Fer-
mi liquid of considerable experimental and theoretical
interest. One of the unique features of degenerate
Fermi systems is that the single-particle momentum
distribution n (p) has a discontinuity at the Fermi en-
ergy EF if the interaction between the particles is not
too strong. A direct observation of n (p) would be of
great help in evaluating theoretical calculations of the
ground state in the liquid. In the absence of a direct
observation of the shape of n (p), information on the
moments, one of which gives the average kinetic ener-
gy per atom, is of great use since they may be com-
pared to theoretical calculations.

Information about n(p) can be obtained from in-
elastic neutron scattering experiments. At sufficiently
large values of the momentum transfer 0, only
single-particle scattering is observed. The dynamic
structure factor S(Q,E) may then be calculated using
the impulse approximation (IA) and is given by

$202 h 2

S(Q,E) =„'I n(p)8 E — — Q p d p, (1)

where M is the mass of the particles constituting the
scattering system. Recent measurements' on liquid
and solid 4He have shown that the IA is valid for
momentum transfers above 10 A ' and that the
single-particle momentum distribution may be ob-
tained from the observed S(Q,E). Analogous experi-
ments using x rays have been made to study n (p) of
electrons in metals and have observed the discontinui-
ty at the Fermi surface. 2

We report here the first neutron scattering measure-
ments on liquid He at high momentum transfer. The
experiment was carried out with the low-resolution
medium-energy chopper spectrometer (LRMECS) at
the Intense Pulsed Neutron Source at Argonne.

LRMECS is a time-of-flight spectrometer with a
chopper before the sample to monochromatize the
pulsed white beam from the spallation neutron source.
The chopper-source phasing was chosen such that neu-
trons of energy 260 meV were selected. Time-of-flight
spectra for scattered neutrons were observed at four-
teen scattering angles between 58.8' and 116.4', corre-
sponding to momentum transfers in the range 10 A-1
to 16 A ' for neutrons scattered from freely recoiling
3He atoms.

The large neutron-absorption cross section of the
3He nucleus complicates the experiment, because to
correctly remove the scattering from the cell we must
be able to do an empty-cell run without observing
scattering from the parts of the cell obscured by the
sample. The optimal configuration in this case is to

FIG. 1. Cell geometry used in this work; the inset illus-
trates how the cadium slats prevent scattering from the back
of the cell from reaching the detectors.
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FIG. 2. Observed scattering with (circles) and without (line) the 3He sample in the cell at 91.8' scattering angle. The large
signal at small times is due to scattering from the Al window.

use a reflection geometry and a cell design of the type
used by Skold and Pelizzari which makes use of cad-
mium slats to shield the back of the cell from the
detectors. The body of the present cell was made of
copper with an aluminum front window, 0.8 mm thick,
glued to the copper. The normal to the cell was orient-
ed at 45' to the incident beam. The sample cell and
the scattering geometry are illustrated in Fig. 1. With
this arrangement extraneous scattering from the Al
window is minimized, while no scattering is observed
from the back of the cell when the sample is not
present.

The sample cell was attached to the mixing chamber
of a 3He-4He dilution refrigerator which maintained
the sample temperature Tat 0.20 K. The liquid was at
saturated vapor pressure (SVP). At this density, the
Fermi temperature is TF=1.6 K. Since T(( TF, the
difference from a measurement at the T =0 should be

insignificant.
Data were collected for 103 h on the 3He sample and

for 24 h on the empty cell. The time-average flux on
sample was 5.5 & 103 nlcm2 s. Examples of the spectra
observed with the filled cell and with the empty cell
are shown in Fig. 2. The main contribution to the
background is the scattering from thC Al window. Due
to the relatively large mass of aluminum, this contri-
butes a signal at energies below the recoil peak from
3He. The scattering from the cell is approximately 1

order of magnitude larger than the He signal. The
same data are shown in Fig. 3 after correction for the
cell scattering and detector efficiency and after conver-
sion to S(Q,E) form. No correction has been made
here for self-absorption in the sample since this is rela-
tively constant over the energy range covered by the
recoil peaks. Also, no correction has been made for
multiple scattering: Because of the highly absorbing
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FIG. 3. Scattering function g(y, E) at 91.8 scattering angle. The momentum transfer is 0 = 13.85 A . The arrow marks

the recoil energy for neutron scattering from a He nucleus. The dotted line is a fit to the data with a Gaussian.
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range 7 to 10 K. A more recent calculation9 obtained

(K) =13 K.
This work was supported by the U. S. Department of
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FIG. 5. %idths cr0 of the Gaussian fit to the data at con-
stant 0 before (crosses) and after (circles) correction for
resolution. The experimental resolution width is also shown
(pluses). The solid line represents a least-squares fit of Eq.
(3) to the data and the dashed lines are one standard devia-
tion from the fit.
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