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Kinetic Energies in Quantum Solids
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We show that the recently measured kinetic energy of atoms in solid helium is substantially larger
than expected for even a moderately anharmonic solid. The large kinetic energy is rather an expli-
cit measure of the highly anharmonic nature of solid helium. An explanation is proposed here in
terms of the anharmonic one-phonon response functions which have large, high-frequency tails
that contribute significantly to the kinetic energy.

PACS numbers: 63.10.+a, 67.80.CX

Recent measurements'2 of the atomic kinetic ener-
gy (KE) in solid helium by means of neutron scatter-
ing at high momentum transfer provide exciting new
information on quantum solids. The KE has also been
evaluated by Monte Carlo (MC) methods in the exten-
sive studies of solid helium by Whitlock et al. 3 and
more recently by Whitlock and Panoff. " These results
are displayed in Fig. 1 where we see that the MC
values lie slightly below the observed values. The aim
of the present Letter is to show that the KE provides a
quantitative measure of the highly anharmonic charac-
ter of solid helium. Firstly, the observed KE is much
larger than expected for even a moderately anharmon-
ic solid. Secondly, we propose that the large KE can
be explained in terms of the highly anharmonic one-
phonon response functions found in quantum
solids. '-'

At low temperature a moderately anharmonic solid
can be described reasonably well by a Debye model. s

In this model the KE per atom at T=O K is —„(}z,
where Hn is the Debye temperature. We take T=0 K
since in solid helium T((OD and thermal energies
should be less than 5%—10'/0 of the zero-point energy
at T = 1 K. In Fig. 1 we show the Debye KE of solid
He calculated with use of observed values of (}nw, the

Debye 0 as obtained from the Debye-Wailer factor.
For example, we used (}Dw = 25 K at V = 21.1

cm /mol, and HDw=50 K at V=16.0 cm /mol' for
hcp He. These empirical values of ODw are deter-
mined from observed values of the mean square vibra-
tional amplitude, ( tt) 2= 9t /4MkHDw, where M is the
mass, via the Debye-Wailer factor. The values of OD

in bcc 4He obtained from specific heat measurements"
lie within 5% of ODw. From Fig. 1 we see that for hcp
4He the Debye KE lies well below the observed values
of Hilleke et al. ' and significantly below the MC
values. Thus an empirically adjusted Debye model
cannot even approximately account for the observed
or MC values of the KE. The failure of the Debye
model is greatest at larger volumes where the atomic

50 —MC (fcc)-+ H-

20—

OBSERVED (bcc}
H

PRESENT (bcc)
T MATRIX

SOLID He ~ DE BYE (bcc)

I

22
lo

I8 20
V (cm /mole}

FIG. 1. Kinetic energy in solid He. Solid circle with error
bars, observed values in hcp 4He (Refs. l and 2); open circle
with error bar, bcc 4He (P. Sokol, private communication);
triangle, calculated Monte Carlo value in fcc 4He (Ref. 4);
squares, calculated MC values in fcc 4He (Ref. 3) with
dashed line as guide to eye; solid curve, Debye model KE
= ~60D in hcp 4He; solid circle, Debye KE in bcc He; open
circle, present anharmonic T-matrix KE in bcc He from
Table I.

vibrational amplitudes and anharmonic effects are larg-
est.

If we assume a Gaussian vibrational distribution of
the atoms about their lattice points, the observed HDw

can be used to set (u2) . The atomic KE predicted by a
Gaussian distribution is Ek = 9h /SM(u ) = HD/2
which lies slightly below the Debye KE shown in Fig.
1. Thus an effective harmonic picture using Gaussian
vibrational amplitudes also cannot be adjusted to ex-
plain both the observed (}zw and the observed KE.

To develop an anharmonic model, we now relate the
KE to averages over a full anharmonic, one-phonon
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response function '2

8','),r (qZ, cu)

[ o)2+ coq'„+ 2r0q, h(qx, co) ]~+ [2r0q) I (qZ co) ]2

Here coq~ is the basis one-phonon frequency for wave vector q and branch X while b, and I are the phonon fre-
quency shift and inverse lifetime due to further anharmonic terms, respectively. The A (qA. , c0) is observed, for
example, in the one-phonon dynamic form factor7 s'2

S, (g, )=(2 )-'ir(g, q) )l'A(q), )b, (g —q), (2)

where F(g, qA. ) is the structure factor. If we make the usual expansion of the atomic displacernents u (t) in
terms of normal coordinates (here interacting), we have'2

X(u (t)u (r')) = —X J e ' " ''A(qz, o)). (3)

We may differentiate (3) with respect to t and t' to ob-
tain the velocity correlation function. Taking the limit
t = t' after differentiation we obtain (u2) and

a

co'A (q X, r0) .
4% q o)qg

"o 2m'
(4)

In (4) the KE is expressed as the second moment of
A (qA. , co) for each phonon qA. .

To display the basic character of (4) we examine two
points. Firstly, if the phonons have infinite lifetimes,
then

A (qZ, co) =27r [5(r0 —r0 ~) —h(o)+~ ~)]

and (4) reduces to Ek= (k/4N)/~&co«which is the
familiar harmonic form. The A (q)t. , cu) and KE also
take this form in the self-consistent harmonic (SCH)
approximation (ca~&, = roti ). Since the coqs~cH exceed
observed values in bcc 4He (see Fig. 2 and Ref. 12),
the SCH KE also ought to be too large if the harmonic
form is correct. Secondly, the St ( g, cu) satisfies the
Ambegaokar-Conway-Baym sum rule 13

t dr0 QJ St ( g, r0 ) = QJ +g i F( g, q QJ ) i (5)

so that from (2)

1 ~ de
fd A ( q)t. , QJ ) = 1.

co g ~0 27K'
qA.

The first moment of A (qA. , cu) must be equal to co~„,
the starting or basis frequency used to calculate
A (qA. , su). For example, the SCH frequencies may be
used as basis frequencies (cu~~=cuqs~c ). If the cubic
anharmonic term is added as a perturbation to calcu-
late 5 and I, A (q A. , co) in (1) will peak at a frequency
below co~& H. This is illustrated in Fig. 3. The
Ambegaokar-Conway-Baym sum rule tells us that the
resulting A (qk, r0) must have sufficient width and
shape that, although it peaks below cu &, the first mo-
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FIG. 2. The co (solid line) and SCH (dotted line) frequen-
cy dispersion curves in bcc 4He ( V=21 cm3/mol). The
points are observed values (Ref. 5). The dashed line shows
the peak position of A (qA. , co) for two transverse modes.

t
ment remains equal to ~~q . Indeed in bcc He the

A (qX, r0) are found to have tails extending up to high
frequency. s 7 We expect high-frequency tails to con-
tribute significantly to the second moment appearing
in (4), making the anharmonic KE large and greater
than the SCH value.

In our explicit calculations we begin with the SCH
frequencies as a basis and include the cubic anharmon-
ic term in A (qA. , cu). Using this A (qA. , cu) and follow-
ing Horner, we define frequencies

td~~A (qX, o))/ ' do)A (qX, o)).

Th~~e cu, „are taken as the best infinite-lifetime basis
frequencies to represent solid helium (m „=r0 «) and
are used to evaluate A (qi, co) in final form (see Glyde
and Hernadi' for details). In Fig. 3 we show a typical
response function calculated using the ~ „. This has a
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TABLE I. Kinetic energies (in kelvins) in bcc 4He

( V= 21 cm3/mol) and 3He ( V= 24 cm3/mol) calculated by
use of the Nosanow-Jastrow (NJ) and T-matrix methods: Fo,

Eq. (7); SCH, Eq. (7) with SCH frequencies; anharmonic,
Eq. (4).

4He
T matrix NJ

3He
T matrix NJ

t
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FIG. 3. S~(0, ru) calculated by use of the co~„ frequencies
and the cubic anharmonic term.

SCH
Anharmonic
Debye'

16.0
18.6
19.5

12.7

13.9
15.1
15.6

14.5
18.0
27.9

11.0

13.5
14.3
14.5

substantial width and a high-frequency tail. High-
frequency tails in St(0, r0) are due to the steep repul-
sive (anharmonic) core of the interatomic potential.
High-frequency tails in S(0, c0) are also expected's in
liquid 4He. These A (qh. , c0) were used in (4) to ob-
tain the anharrnonic KE and to verify the sum rule
(6). We have used here the Beck potential'6 which
represents the He-He potential well. ' The repulsive
core is the important part of the potential for the
dynamics. While the potential is well known for the
purpose here, there remains some debatets about the
details of the core. In the example shown in Fig. 3 we
used a T-matrix treatment' of the short-range correla-
tions (SRC's) between atoms to calculate cuq„, b„, and
I in (1). To test the sensitivity of the results to the
treatment of SRC's we have also used the original
Nosanow Jastrow20 method.

The important contribution to the KE from the
high-frequency tails of 3 (q), r0) is displayed in Table
I. If an infinite lifetime model is adequate, then

Ek = (f/4N) X xcuq„ (7)

ought to agree with experiment, since the co~z are ap-
proximately equal to the observed values in Fig. 2.
The full anharmonic KE obtained from (4) is substan-
tially larger, especially in bcc He. Also, the KE calcu-
lated by use of the T-matrix treatmentt9 of the SRC's
is larger than that obtained for the Nosanow -Jastrow
method. This is because the T-matrix SRC function
does not cut off the anharmonic hard core of the in-
teratomic potential as severely as does the Nosanow-
Jastrow function. More of the anharmonic hard core
remains in the T-matrix method, leading to higher cu

and a larger cubic anharmonic term in A (qA. , cu). The
present T matrix should provide a better treatment of
the hard core and a more reliable KE since in this
method the SRC function is obtained by solution of a
differential equation in the real potential. The present
calculations are approximate, however, and depend
upon the input frequencies to A (ql. , co). Use of the
peak position of the response (see Fig. 3) would give a
somewhat higher KE ( —20'/o) while use of SCH fre-

'With HD~= 22.5 K ( He, Ref. 5}and 80 = 19.5 K ( He, Ref. 21).

quencies would give a lower KE ( —5%). The chief
aim is to illustrate the high-frequency tail contribu-
tions to the KE explicitly.

The ratio of the T-matrix anharmonic KE to the De-
bye value in bcc 4He is 8 =1.5. The same ratio ap-
plied to hcp "He at V=19.45 cm /mol predicts an
anharmonic KE of 27 K. This lies slightly above the
MC values shown in Fig. 1 but still below the ob-
served' value of 31.1+0.9 K. Inclusion of further
anharmonic terms could increase R somewhat.

In bcc 3He the ratio of anharmonic KE calculated by
use of the Tmatrix to Debye KE is significantly larger,
R =2.5. That is, we predict a substantially larger KE
in 3He than would be suggested by a comparison of the
Debye temperatures in He and He. In bcc He we
have used the maximum value of On observed by
Greywall ' which agrees well with the maximum HD

observed earlier by Castles and Adams.
The purpose here is to show that the observed KE in

He is nearly twice that expected for a moderately
anharmonic solid. We propose that the large KE
results from the high-frequency tails of the anharmon-
ic one-phonon response function which contributes
greatly to the KE but little to ODw. Measurements of
the KE in bcc He could test this hypothesis since we
predict the tail contributions to be larger in He than in
'He.
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