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Conversion of Wave Energy to Magnetic Field Energy in a Plasma Torus
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The circuit equations for current drive are derived by the finding of appropriate response func-
tions in the presence of an electric field. The effect of arbitrary wave-induced fluxes on runaway
production and current generation can then be determined. An interpretation of recent remarkable
experiments is now possible, and the favorable results appear to scale to reactor-grade devices.

PACS numbers: 52.50.Gj, 52.35.Hr, 52.55.Fa

Recent current-drive experiments on the Princeton
Large Torus (PLT)' have converted wave energy to
poloidal field energy with the remarkable efficiency of
25'/o. Previous experiments2 5 have concentrated
more on maintaining an rf current ("steady state")
than on increasing it ("rampup"). The PLT rampup
experiments, however, have been in a new parameter
regime, wherein the dc electric field dominates over
collisions in influencing the hot, current-carrying elec-
trons. In order to interpret these experiments, and in
order to determine whether this high efficiency might
be obtained also in larger tokamak experiments, such
as TFCX, it is necessary to solve for the behavior of
the plasma in the presence of both intense rf waves
and a strong electric field.

The circuit equations that describe the rampup in-
clude Maxwell's equation, dLI/dt = —V, and a consti-
tutive relation, e.g. , V= V(I,P), where Vis the loop
voltage, P is the input power, L is the tokamak induc-
tance, and I is the toroidal current. To find the consti-
tutive relation, which reflects the macroscopic proper-
ties of the plasma medium, we distinguish I= Iz+ Id,
where I~ is independent of the rf power. The driven
current, Id(t), contains the cumulative effects of rf-
induced fluxes at time 7 for all T (

To find Id, we generalize a previously employed
technique. Let j(t, v, E) = qv~~, where ~~~ is the ve-
locity parallel to magnetic field B at time t of an elec-
tron that has initial velocity space coordinate v and is
immersed in a dc parallel electric field E. Initially,
j(0,v, E) =qv~~(t=0). In a torus of radius RT, the
contribution to the toroidal current I by this electron is
j/2n. RT (although we loosely refer to j as a current).
In the absence of an electric field, j 0 at t ~ be-
cause of collisions with the background plasma. In the
presence of an electric field large enough to cause the
electron to run away, j—t for large t, and for E ) 0,
j —qc as t ~, where c is the velocity of light.

Suppose that power P(v, v) is expended at time 7 in
pushing electrons with coordinate v in some direction
S in velocity space to a nearby location. The current
that results at some later time t may be expressed as

( )
&' P (7, v) S '7j( t —~, v, E)

d J p S '7e

where the gradient operates in velocity space, and
where e = mu2/2 is the energy associated with the ini-
tial coordinates of the electrons pushed. The physics
of the rf current drive is contained in the Green's
function j, which we shall calculate numerically.

Before embarking on this program, we remark brief-
ly on the major processes we expect to describe. An
electron absorbing energy and momentum from a
source of rf power subsequently slows down either by
collisions or by the electric field. In the former in-
stance, all the rf input energy goes into plasma heating
so that the conversion efficiency of rf energy to po-
loidal field energy, given by the ratio P i/P, where
P„= —Vld, is zero. In the latter instance, the electron
is decelerated by the field, so that all of its energy, in-
cluding the incrementally added rf energy, must go
into the field. Evidently, P,i//P 1. This points to a
regime for efficient energy conversion except for two
further effects that are worrisome.

First, if the electric field is very strong, the de-
celerated electron may eventually run away in the
direction opposite to the one desired for current ramp-
up. Such an electron, while initially giving up its initial
energy to the field, serves as an immense drain on the
field energy when it accelerates in the runaway direc-
tion. Second, even if no runaways were produced, the
rf-driven electrons, being hot and relatively collision-
less, tend to accumulate and to form a large, hot, plas-
ma component. The conductivity of this hot com-
ponent can be much larger than that of the background
plasma. Since it is difficult to change the total plasma
current in less than an I./R (inductance/resistance)
time, the large, hot conductivity may significantly im-
pede current rampup. 7

It turns out that between the regimes of relatively
high and relatively low electric field strength that ap-
pear to contain unfavorable effects, there exists a re-
gime of intermediate field for which high efficiency is
possible. Whether by serendipity or astute design, the
remarkable PLT experiment apparently falls in the in-
termediate regime.

To calculate the efficiency, we need the Green's
function j, but it is unwieldy and impractical to solve
completely for j(t, v, E), whose arguments span a huge
parameter space. Instead, by following separately par-
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ticles with common characteristics (runaway or not),
and making appropriate approximations for each
group, we can characterize j by several functions of
fewer arguments. This approach can be implemented
by formulation of the normalized Langevin equa-
tionss 9 for electrons undergoing collisions in the pres-
ence of a decelerating electric field, namely

1
jx, (2a)

dp, 1+Z
( )

1 p
dT u3 u

(2b)

where p, = v ~~/~. We normalized r = vz t, u =v/vz,
and defined

v~2
—=

v, v3m/(qE(, v~ = v,v,'/v~3,

v,'= T/m, v, = ~to(lnA)/4mnu, '-,

and Z is the ion charge state. The runaway threshold
velocity, uz, is related to vb defined by Dreicer by
vb =v„(2+ Z) t/2. At (v( ( v~, no electrons run
away, and at v & vb, almost all electrons run away (see
Fig. 2). The term f'(r) is a stochastic source, s so that
Eqs. (2) are equivalent to the Boltzmann equation in
the high-velocity limit. We can use them to form a
moment hierarchy and proceed to solve analytically.
This can be done for E small to recover the steady-
state efficiency2 and the rf-enhanced conductivity. 7

Note that the solution is determined by the three
dimensionless parameters Z, p, (0), and u (0), where 0
denotes initial location. For lower-hybrid current
drive at high phase velocities we may restrict p, (0)

= +1, where + corresponds to rampup. Introducing
a separate bookkeeping for runaway and nonrunaway
(stopped) electrons, we write

j(t, v, E)
= [I —R (v, E)]j(s(r, v, E) + R (v, E)j~(t, v, E), (3)

where R is the probability that the particle runs away,
js is the current due to the particles which are stopped
by the background plasma (v 0, at t ~), and j„
is the current due to particles which run away
(p, v —~, as t ~). This system of bookkeeping
facilitates further simplifications. Specifically, the
function j(t, v) may be adequately characterized by
functions independent of time. For example, since
stopped electrons contribute to the current within a
slowing-down time, which is short compared to other
times of interest, an excellent approximation is js(v, t)= Xs(v)5(t), where

f+ OO

Xs(v) =
J js(t, v)dt. (4)

Similarly, the runaway contribution may be character-
ized by jest

= X&5(t) plus a term describing the free ac-
celeration of these electrons. The acceleration term
requires that we define a fourth function, v 0 (v).

Characterization of the current j by the four time-
independent functions R, Xs, X„, and v is adequate
for the purposes of writing the circuit equations. It is
also a great simplification of the problem. These func-
tions are found by a Monte Carlo solution of Eq. (2),
using 10 000 electrons at each initial condition.
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FIG. 1. The function G(u, 1)/u2 vs u and G(u, —1)/u2
vs —u for Z=1 (closed circles) and Z =5 (open circles).
The points show the results of the Monte Carlo solution of
the Langevin equations; the lines show the analytic fit, Eq.
(8). Here, u ( 0 corresponds to initial conditions with
p. = —1.

FIG. 2. The runaway fraction R (u, 1) vs uand R(u, —I)
vs —u for Z=1 (closed circles) and Z =5 (open circles).
The points show the results of the Monte Carlo method, the
curves show approximate analytic fits near the "turn-on"
region p, =1, u /1. For u ) 6, the form of the curves is
R =a[(u —b)4 c4] —ac; for u~ b, R =0—. For Z= 1, we
have a = 0.12, b = 1.4, c = 0.4. For Z = 5, we have a = 0.3,
b = 1.3, e = 0.4.
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Depending on their time-asymptotic behavior, the electrons are then classified as stopped or runaway. For our
purposes here, however, we need only R and Xz., a discussion of X~ and v( l will be reserved for a more lengthy
report. To calculate the efficiency, we use a function G(u, p, ) = v~Xs/qv~, where the arguments are now under-
stood to mean initial position. In Fig. 1 we plot G/u, where G is fitted approximately by

u4
G[u, p, = 1]=

5+ Z+ [2u2+ 2(5+ Z)2/3(3+ Z) ]u2/(u2+ 1)
(sa)

u4
G[u, p, = —1] 5+Z

2u
3(3+ Z)

This is a somewhat arbitrary fit to the data, chosen to
reduce to the correct limits. This analytical expression
also gives us a reliable estimate for derivatives of G,
something not available directly from the Monte Carlo
data. For iLi,

= 1, as u ~, G (u, 1) u2/2 and
P,i/P 1, but this efficiency applies only to power ab-
sorbed by stopped electrons; for large u, the runaway
contribution dominates.

In Fig. 2 we show the runaway fraction R ( u, p,
= +1). For rampup with u ~, R = 60% for Z= 1

and R = 85% for Z=5. Note that R =0 for u less
than some threshold and the transition to finite R is
abrupt. As pointed out by Valeo and Eder, 'o even if
only a small fraction (R = 1'/o) of the resonant elec-
trons run away, there may be a significant diminishing
of the efficiency if these electrons are not lost. This
can be seen as follows: If there are many Dreicer
times (I/vz) over the duration T of the experiment,
then j~ = —qc and we may approximate

Pei —VI
1

S VG
P P S.Vu /2

(6)

where qz ——(c/v„)v„Tr/G. Successful startup" or
rampup' experiments on PLT have been in the regime
vz T=30, c/uz ——3, and G —O(1). Thus, R —1'/o

can seriously affect the efficiency if the runaways are
confined. If the runaways are lost in time ~„where
1 ( 'T vg (( Tv&, then q~ must be reduced in Eq.
(6) by about r,/T.

With use of Figs. 1 and 2, an interpretation of the
PLT data is possible. The high efficiency implies that
71~ is small, either because the spectrum is restricted
to u small or because runaways are not confined. Tak-
ing gR =0 in Eq. (Sa) gives the efficiencies shown in
Table I. Interpretation of the data now depends on the
assumption concerning runaways. If runaways are
confined, then to explain a 25% efficiency, we must
restrict Z = 1 and require a spectrum extending from
u = 0.5 to u = 1.4. If runaways are not confined, then
Z = 5 is allowed, but the spectrum must extend to
u —2. This estimate takes into account other losses
and the unlikelihood that all of the rf power is ab-
sorbed exactly in the favorable region 1 & u & 2.
Conventional wisdom, which says that Z = 1 is un-
likely, should then predict that the runaways are not

TABLE I. Efficiency P,JP upon pushing an electron from
some location u~ to u2.

0] ~ Q2

Z=1
(%)

Z=5
(%)

1.4 2
1.4

0.5
0.5 1.4

61
43
24
35

47
30
16
24

long confined.
That the PLT experiment, with either explanation,

is in the regime u = 1 comports well with other exper-
imental data. The reported rampup of 120 kA/s at a
density of 2x 10i2 cm 3 and at a temperature of about
1 keV corresponds to 6v, = uz ——c/4. A spectrum of
parallel phase velocities extending from the electron
tail (say 3v, ) to c/2 is consistent both with substantial
absorption and with the waveguide phasing. Several
theories exist for precisely why the spectrum should be
so broad. ' ' What is important here, however, is that
such a spectrum corresponds exactly to u extending
from 0.5 to 2.

Note that the efficiency of converting wave energy
to poloidal field energy depends only on u, so that the
favorable regime on PLT is available on TFCX (L = 8
p, H) or other large experiments if we keep the ratio
u R/v T constant, and employ a similar spectrum of
waves. For example, to ramp the current to 10 MA in
30 s, take E=0.6 V/m, n=5X10 cm, and T=1
keV, so that both vz and v~/uT are unchanged from
the PLT experiment. Also, take Z=1. With the as-
sumption of, then, a 33% efficiency, an average rf
power of about 40 MW would be required.

There are several tradeoffs involved here: At lower
density, efficient but slower rampup may be achieved
with less power. At higher density, faster waves may
be used, but the plasma must be proportionately hotter
to absorb these waves. There is a danger, however, of
significant energy loss by Joule heating, which is pro-
portional to a»E, where 0» is the bulk conductivity.
To avoid this loss, the plasma must be kept resistive.
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In the above case, this would imply T & 2 keV, which
can be maintained if the bulk energy confinement time
is short ( —30 ms).

In the above calculation, care is taken not to pro-
duce runaways. If some method of removing these
runaways were possible, then even higher efficiencies
might be obtained by taking co/k~~ vit —2.

Note that much of our intuition derived from effi-
ciency calculations in the steady state' is not suitable
for rampup. For example, the steady-state efficiency,
I/P, is inversely proportional to the density, whereas
for quick rampup, a high efficiency is possible at high
density; in fact, too low a density may be undersirable.
Also, whereas in the steady state, electron-cyclotron
waves are about as efficient in producing current as are
lower-hybrid waves, 6 in rampup these waves would ap-
pear to be a poor current driver, because runaway pro-
duction is more likely, while less parallel energy flows
into the strong electric field.

Although the estimates made here are crude, it is
clear that more precision is easily available within the
framework of this analysis. The level of precision at-
tempted here, however, is sufficient to show that the
PLT results are amenable to interpretation and extra-
polation. It is reasonable to expect efficient and swift
conversion of wave energy to field energy in reactor-
grade tokamaks if they are designed so that the PLT
parameter regime of utt/ut and co//c~~ tttt is kept.
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