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Microwave Radiation from a High-Gain Free-Electron Laser Amplifier
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A high-gain, high —extraction-efficiency, linearly polarized free-electron laser amplifier has been
operated at 34.6 GHz. At low signal levels, exponential gain of 13.4 dB/m has been measured.
With a 30-kW input signal, saturation was observed with an 80-MW output and a 5% extraction ef-
ficiency. The results are in good agreement with linear models at small signal levels and nonlinear
models at large signal levels.

PACS numbers 42.60.By, 41.70.+t, 42.52. +x

The free-electron laser (FEL) is capable of produc-
ing coherent radiation from the ultraviolet to the
microwave region of the electromagnetic spectrum.
Several recent experiments have demonstrated low-
gain, low-efficiency FEL operation in the visible and
infrared2 regions while other experiments have
demonstrated high-gain FEL operation in the
millimeter-wave regime. " We have designed an ex-
periment, the Electron Laser Facility (ELF), which
can serve as a test of the physical models used to
predict high-gain and high-efficiency FEL operation in
the visible spectral region. The ELF consists of an
amplifier with well-defined initial conditions on the ra-
diation and the electron beam and with no axial mag-
netic field.

Figure 1 shows the experimental configuration used
in the ELF.5 We utilized the Lawrence Livermore Na-
tional Laboratory experimental test accelerator to pro-
vide a 6-kA, —3.3-MeV beam with a normalized
emittance of 1 57r rad c.m. An emittance filter is used
to reduce the beam current to approximately 500 A
(pulse length of 15 ns) with a normalized edge emit-
tance of 0.47m rad cm.

The 3-m-long wiggler is composed of specially
shaped solenoids to provide a linearly polarized wiggler
with a 9.8-cm period. The pulsed wiggler can provide
a peak field on axis of 5 kG. Each two periods of the
wiggler is energized by a separate power supply which
allows variation of the strength and longitudinal profile
of the wiggler field, although the experiments
described here use a constant-amplitude wiggler. Ver-
tical focusing of the electron beam is provided by the
natural focusing of the wiggler field. Horizontal focus-
ing is achieved with continuous quadrupoles with a
field gradient of 30 G/cm. The magnets surround a
2.9X 9.8-cm2 stainless-steel waveguide which serves as
the interaction region.

The microwave input to the amplifier was provided
by a 34.6-GHz, 60-kW pulsed magnetron (pulse length
of 500 ns). This input signal was injected into the
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FIG. l. Experimental configuration.

TEp& mode of the interaction region by means of
waveguide tapers (to match smoothly the WR28 out-
put waveguide of the magnetron to the oversized FEL
waveguide) and a fine wire mesh reflector (see Fig. 1).
The electron beam passed through this mesh with no
loss of current and negligible emittance growth. Mea-
surements showed that conversion from the TE&p
mode of the fundamental guide to the TEpt mode of
the oversized guide resulted in a 3-dB loss of input sig-
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nal. A special diagnostic probe was constructed to
travel the length of the waveguide and provide real-
time imaging of the electron beam position. The reso-
lution of this probe is +0.5 cm. When this probe was
inserted into the wiggler, the magnetron was replaced
by a microwave attenuator and crystal detector (con-
figuration A of Fig. 1) so that any amplified noise
which was reflected off the moving probe could be
detected. By measuring the microwave power as a
function of probe position, we could determine the
small-signal gain of the FEL.

Output power of the FEL amplifier was measured ei-
ther by a vacuum laser calorimeter or calibrated crystal
detectors preceded by approximately 100 dB of at-
tenuation. When the calorimeter was used, the micro-
wave pulse shape could be monitored with a crystal
detector. All microwave elements (the magnetron and
the calorimeter or output window) were transit-time
isolated to prevent multiple passes of the microwave
signal through the interaction region.

The signal gain in the super-radiant mode (no
microwave input signal) was measured by means of
the arrangement illustrated in configuration A of Fig.
1, and the results of this experiment are given in Fig.
2. The beam energy was 3.6 MeV (y=8.1) and the
wiggler magnetic field was 4.8 kG. The microwave ra-
diation generated in the interaction region reflected off
the face of the beam probe and was monitored by a
crystal detector. Extracting the probe continuously
lengthened the interaction region. The results (Fig. 2)
indicate that the microwave signal grew at a rate of
13.4 dB/m for a beam current of 450 A.

We studied the amplifier gain by means of config-
uration B of Fig. 1 both as a function of wiggler mag-
netic field intensity and as a function of wiggler length.
In this part of the experiment, the beam energy was
3.3 MeV. The depedence of the gain on wiggler field
strength is shown in Fig. 3 for 1-, 2-, and 3-m-long,
constant-amplitude wigglers. The peak output power
of 80 MW achieved for both the 2- and 3-m-long
wigglers indicates that the amplifier saturated near the
2-m point. The gain curves for the 1- and 2-m
wigglers are relatively symmetric about the peak while
the gain curve for the 3-m-long wiggler shows a
marked asymmetry with a plateau on the long-
wavelength side of the curve. This asymmetry is also
shown in the simulations discussed below.

Near the magnetic field strength corresponding to
the peak output of a 1-m-long wiggler, we examined
the amplification as a function of wiggler length. The
results of this experiment are shown in Fig. 4. It is
clearly seen that the amplifier goes into saturation at
2.2 m; beyond this point, the amplified output power
first decreases and then near 3 m starts to increase
again. The gain as a function of wiggler length shows
an exponential gain of approximately 15.6 dB/m up to
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FIG. 2. Small-signal gain in the super-radiant mode as a
function of wiggler length.

saturation (L =2.2 m). This is in close agreement
with the small-signal gain measurement described
above. (Note that the small-signal gain is proportional
to 8„/y3/2, which is nearly the same in both cases. )

The linear theory best suited to the experiment has
been derived by linearization of the single-particle,
longitudinal (y-Q) equations of motion derived by
Kroll, Morton, and Rosenbluth. 8 The procedure is
identical to that of Bonifacio, Pelligrini, and Narducci,
with the addition of explicit betatron motion (i.e. ,
emittance effects) and an integration over the
waveguide. This version of the linear theory predicts a
very steep dependence of gain on the electron beam
emittance, and hence radius in the wiggler. The ob-
served exponential gain, after we account for fractional
coupling into the growing mode (launching losses),
corresponds to a maximum beam radius of approxi-
mately 8 mm. This beam radius is consistent with the
image seen on the axial probe.

The numerical simulations follow 4096 electrons in
a single ponderomotive potential well. The particles
undergo betatron oscillations in the transverse direc-
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in the presence of numerical noise; the difference in
peak powers is a discrepancy of only 10'/o in the ex-
ponential gain.

No self-consistent set of parameters explains both
gain and efficiency in one-dimensional warm-beam
models, when the emittance effects are approximated
by an equivalent energy spread. We conclude that fi-
nite emittance cannot be represented as an equivalent
energy spread.

We have successfully operated a FEL in the milli-
meter wave regime. This device, which has no axial
magnetic field, is fully scalable to the visible
wavelength regime. The results of linear theory and
two-dimensional numerical modeling are in good
agreement with the experimental results.
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