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Where Is the Continuum in Lattice Quantum Chromodynamics?
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We present a Monte Carlo calculation of the quark-liberating phase transition in lattice quantum
chromodynamics. The transition temperature as a function of the lattice coupling g does not scale
according to the perturbative beta function for 6/g2 ( 6.1. We use finite-size scaling in analyzing
the properties of the lattice system near the transition point.
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During the last few years gluon thermodynamics has
been studied extensively within the framework of lat-
tice quantum chromodynamics. Early strong-coupling
calculations'z and Monte Carlo simulation of the
deconfining phase transition3 4 opened the way to de-
tailed quantitative results for the realistic SU(3) color
group. 5

We believe that the SU(3) deconfining phase transi-
tion with its expected first-order character6 is a good
laboratory to study the continuum limit of lattice
QCD. The determination of the transition tempera-
ture is a unique test of the onset of scaling behavior as
the continuum is approached. This expectation is
based on the observation that T, as a physical quantity
is strictly nonperturbative and free from cutoff-
dependent ultraviolet divergences which make string
tension measurements difficult. Location of T, is par-
ticularly easy because the system undergoes a sharp
first-order phase transition where rounding effects are

small.
The partition function for the Euclidean Wilson ac-

tion SE( U) on the lattice is defined by the functional
integral

Z = dU exp[ —PSE( U) ],
x, t, p,

where the integral in Eq. (1) is with respect to the
Haar measure, and the inverse lattice coupling con-
stant is P = 6/g2. The Wilson action SE is defined as a
sum over all unoriented plaquettes:

SE(U) = X (1 ——', Re TrUUUU).
plaquettes

We recall that the thermodynamics for finite tem-
peratures is realized by lattices with spatial volume n,3

and temporal size n, . The temperature T is 1/an„
where a is the lattice cutoff. Strictly speaking, n,
should be taken to infinity for fixed n, in the thermo-
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FIG. 1. The graphs on the left show the distribution of the Polyakov loop Pin phase space on a 9 by 2 lattice. The top row
corresponds to P (P, (confined), the middle row is at P„and the bottom row has P )P, (deconfined). Each point corre-
sponds to the value of the average Polyakov loop on a given configuration, and each measurement is separated by 20 sweeps at
P, and 5 sweeps away from the transition region. The histograms on the right show the distribution of points as a function of
the radial distance.
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dynamic limit. This is only approximately realized in
Monte Carlo calculations, and finite-size scaling be-
comes an important issue in the analysis.

The lattice spacing a is a known function of the cou-
pling g in the continuum limit,

a =A (167r /1lg ) exp( —87r /1lg ) (3)

where At is the lattice scale parameter. In this limit
the scale can be set by AL = CMcr with the string ten-
sion o. = (400 MeV)2. The constant C can be deter-
mined from Monte Carlo calculations of the static

l

Z = J1 [dP]exp[ —S,„„(P)].
The effective action is

(4)

quark-antiquark potential. '

Following the method of Polonyi and Szlachanyi, s 9

we develop a qualitative physical picture for the phase
transition which will guide our analysis of the Monte
Carlo data. In strong coupling we can derive an effec-
tive action' in three dimensions from the partition
function of Eq. (1) by integrating out the spatial link
variables,

S rr(P) =P,rrXIP(x) —P(x+e;) l + X[——,
' In[27 —18lP(x) l2+8ReP(x)3 —lP(x) l ] —6P,rrlP(x) I ),

x, I

where p, rr= (1/3g ) ', and the Polyakov loop P(x) is
defined as

n,

P(x) —= Tr U, (x, t).
t=1

We shall denote the spatial average of P(x) by P. S,ff
is invariant under global Z3 transformations. Mean-
field calculations'0 predict a first-order phase transition
at a value of P,rr above which the Z3 symmetry is
spontaneously broken. At the transition point the
three broken Z3 phases coexist with the unbroken
phase at the origin.

Our Monte Carlo calculations were performed as fol-
lows: For each lattice size and value of P we generate
gauge field configurations using the quasi-heat-bath
method' of Cabibbo and Marinari. In order to exe-
cute the computation as efficiently as possible we use a
lattice with helical boundary conditions. We measure
the average value of the Polyakov loop P on these con-
figurations, and plot the values on phase-space plots
such as those of Fig. 1. This shows the results of three
Monte Carlo runs: The first one with P below the
transition point P, illustrates the distribution found
when the gluon plasma is in the confined phase; the
second at P, shows the case where the confined phase
coexists with the deconfined phase; and the third
above P, has the points clustered around nonvanishing
expectation values along the Z3 directions, which is
the signal for the deconfined phase.

The coexistence of the two phases over runs of great
length (ten to forty thousand sweeps were typically re-
quired to study the system very close to the critical
point) together with the jump in the order parameter P
between the two phases provides conclusive evidence
that the transition is of first order.

In order to measure P, with sufficient accuracy to
perform a finite-size scaling analysis we choose a pre-
cise quantitative criterion for determining the location
of the transition point. We plot histograms, such as
those in Fig. 1, showing the distribution of the magni-
tude of P and we choose P, to be the value of P for

TABLE I. Values of the transition point P, for lattices
with n, links in the temperature direction and n, links in
each spatial direction. The values extrapolated to lattices of
infinite spatial extent are also given.
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5.071 + 0.001
5.086 + 0.002
5.092 + 0.0015
5.0945 + 0.001
5.097 + 0.001
5.669 + 0.005
5.680 + 0.005
5.690 + 0.003
5.696 + 0.004
5.830 + 0.01
5.853 + 0.002
5.865 + 0.004
5.877 + 0.006
5.95 +0.03
5.985 + 0.015
6.00 + 0.02
6.09 + 0.03

which the number of points in the peak near the origin
equals the number in the deconfined peak.

There is some arbitrariness in the definition of P,
for a given volume size n, depending on the location
of the cut introduced between the two peaks. Howev-
er, the arbitrariness in dividing the points into these
two classes should not affect the value of P, extrapo-
lated to a lattice of infinite spatial volume. The width
AP, where the two phases coexist, of a temperature-
driven first-order phase transition is expected to scale
aS10p 12

b,P/P, = const x 1/s V,

where V= n, is the spatial volume and s is the latent
entropy of the system.

Near a first-order phase transition we also anticipate
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FIG. 2. Monte Carlo measurements of P, for different
spatial volumes at n, =2, 4, 6, and 8. The lines show the
finite-size scaling extrapolations.

FIG. 3. The transition temperature aT, as a function of
the coupling constant. The solid line is the asymptotic scal-
ing curve with T, = 77.5AL.

a shift in P, as a function of' the volume V which
should scale as 1/ V.

Table I summarizes our results; in it are shown the
values of p, for several lattice sizes. In Fig. 2 we have
plotted p, as a function of the inverse volume for
n, =2, 4, 6, and 8. The measured values lie on a
finite-size scaling curve from which we can extrapolate
our results to infinite volume at fixed n, The.
infinite-volume values for p, thus obtained are also in-
cluded in the table.

The errors quoted for p, on a lattice with finite spa-
tial volume give the range over which the measured
distribution for the Polyakov loop is consistent (within
statistical errors) with our criterion for p, . Other
choices for this criterion would lead to somewhat dif-
ferent finite-volume p, values, but they should lie
within the 1/ V rounding of the phase transition. The
errors on the infinite-volume values are determined
from a linear fit by the 1/ V scaling law. We conclude
that finite-spatial-volume effects are under control in
our analysis.

In Fig. 3 we show aT, as a function of the coupling
constant. The slope of aT, (g ) is steeper by a factor
of about 2 when compared with the two-loop renor-
malization-group beta function for 5.7 & 6/g & 6.1.

We have not extrapolated the point at n, = 10 to in-
finite volume. The shift in p, is expected to be
& 0.03. Our conclusion is that aT, does not obey per-

turbative scaling for p & 6.09. A detailed comparison
of the scaling properties of T„ the interquark poten-
tial, string tension, and ratio test results' are given
elsewhere. '

Our computations were performed on the CYBER

205 computer at the University of Karlsruhe. The de-
tails of our fully vectorized program are described else-
where. 's We have performed many checks on its relia-
bility; in particular, the agreement with a high-order
strong-coupling expansion for the Polyakov-loop cor-
relation function at p = 4 and n, = 2 is very satisfactory.
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