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Quantum Irregular Spectrum in a Corresponding Classically Chaotic Lattice Spin System
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The quantum spectrum is studied in a corresponding classically nonintegrable triangular three-
spin system with antiferromagnetic exchange coupling. A critical energy E, is identified numerical-
ly. Irregularly distributed (bandlike) levels and well-separated clusters of (localized) levels appear
below and above E„respectively. The statistical average of second-order differences of eigenvalues
shows a scaling behavior when the spin magnitude is increased towards + ~.
PACS numbers: 05.45.+b, 05.50.+q, 75.10.Jm

Despite accumulating studies on completely integr-
able lattice spin systems, ' 3 information on noninte-
grable ones is much less complete. For instance,
although a quantum spin S= —,

' one-dimensional LYZ
model is completely integrable, the integrability of its
generalized S & —,

' versions remains an open question:
The classical (S= + ~) limit is a nonintegrable
dynamical system, as will be confirmed below. Thus,
there arises a question about the nature of intermedi-
ate semiclassical regions bridging the S= —, integrable
quantum limit and the S = + ~ nonintegrable classical
limit. In this Letter, we investigate the quantum irreg-
ular spectrum for a three-spin chain with periodic
boundary conditions (i.e., a triangular lattice spin sys-
tem), and with anisotropic (XXZ) antiferromagnetic
exchange coupling. Although the number of spins is
small, we will exploit the advantage of being able to
handle a large range of spin magnitude S. This kind of
small spin cluster can actually be relevant in real ma-
terials such as trinucleus complexes or short-
range —ordered three-spin clusters of Fe2+ ions around
each Rb+ ion in a triangular RbFeC13 antiferromagnet.

First, we present brief results for the classical limit,
showing Poincare surfaces of section for regular
and/or irregular orbits. Second, quantum energy lev-
els in the semiclassical regions for S ~ 36—, are report-
ed and analyzed. Finally, we point out an apparent
scaling law satisfied by the statistical average of
second-order differences of eigenvalues for increasing
(large) S.

The Hamiltonian we consider is

H = X J(S, SI + tr St SI'), 1 ~ ij ~ 3,
& I.J)

where J( & 0) and tT( —1 ~ o. ~ 0) are the antiferro-
magnetic exchange constant and the anisotropy param-
eter, respectively. In the following, we take J=1
without loss of generality. The Hamiltonian in Eq. (1)
holds for both classical and quantum spins. In the
classical limit, SJ is a three-component vector obeying

the equation of motion

dS,/dt= (SJ.,H) =SIX ( —5H/5SI), (2)

where IA, B) is a Poisson bracket. Since the magni-
tude of each spin is conserved, Eq. (2) describes the
dynamics in six-dimensional phase space. For o.=0,
three components of T= QJ3=t SI (more rigorously,
appropriate combinations of them) are constants of
motion, while for tre0, T'=gj=t Sf alone is con-
served. When we note the first integral of motion,
i.e., energy E, the effective dimensionality of the
phase space becomes 2( = 6 —3 —1) and 4( =6 —1
—1) for o. = 0 and for o.~O, respectively. Therefore
the former case is integrable and the latter one may be
nonintegrable. We choose S Jz = 1 and T'= 0
throughout the following classical treatment.

The classical ground state of the system in Eq. (1)
with o- ( 0 is characterized by the 120' structure in a
basal (S"-Sy) plane. So we take as initial data for
Eq. (2) those determined by polar and azimuthal an-
gles of each spin: HID =n./2 QI0 =u; HP =m./2+P,
@P = 2m/3; HP = m/2 —P, @3 =4m/3; where n and

p are arbitrary parameters denoting basal disorder and
off-plane angles, respectively. The energy Eis then

E= —cosa cosP —(cr+1) + (o-+ —,
' )cos P.

E is decreased from high-energy regions towards the
ground-state energy Eg"= —1.5 with n=p=O. For
each fixed value E, several sets of angle variables
(tN. , p) are taken. The resulting dynamics is analyzed
by use of Poincare surfaces of section specified by
dS't/dt=O. Projections onto the (St-Sf) plane are
given in Figs. 1(a)—l(c) for tr = —0.3. (Note that the
sections are still three-dimensional for traO. ) From
these figures we find that most of the orbits are regular
Kolmogorov-Arnol'd-Moser (KAM) tori4 6 in higher-
energy regions and that irregular orbits dominate
KAM orbits in lower-energy regions. We have
checked the irregularity of orbits via the study of
power spectra. Irregular orbits are found to persist in
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the vicinity of E= Eg". These results are the reverse
of those for conventional classical Hamiltonian dynam-
ics. 5 Our results are qualitatively similar throughout
the range —1 ~ o ( 0; only periodic orbits can exist
for the integrable case o- = 0.

We now proceed to the quantum treatment of the
system (1). We have examined a distribution of quan-

t

tum energy levels. (All questions of time dependence

are omitted. ) Diagonalization of the matrix construct-
ed from Eq. (1) is facilitated by use of the C3„sym-
metry of the system and the planar symmetry in spin
space. Basic "kets" are classified by a set of quantum
numbers: wave number K (0, 27r/3, 47r/3), parity
(+1, —1), and magnetization T' (integer, half in-
teger). An example of basic kets with a definite set of
quantum numbers ( T'= M+ M'+ M") is

—,
' [-,'~3(IS,M) t IS,M), IS,M"),+e'~IS,M") t IS,M)z IS,M')3

+e '«lS, M')t lS,M")2 S lS,M)3] + —,'&3[M M'I], (3)

when M, M', and M" take different values. We calcu-
late matrix elements for general spin by noting that
(S,M lsj lS,M), =Ma,

(S,M ls,.'-lS, M),
= [(S + M) (S + M+1) ]'/'~,

A huge matrix is thus decomposed into small block
matrices. In the following, ~e concentrate on the
manifold K=O, parity =+1, and T'= —,'. Energies
are divided by S(S+1) so that these scaled energies
become densely populated in a finite energy range for

S»1.
In Figs. 2(a) —2(c), 276 energy levels for S=22—,

'

are presented with o. = —0.3, —0.1, and 0.0, respec-
tively. 153 energy levels for S =16—,

' with o. = —0.3
are also shown in Fig. 2(a). In Figs. 2(a) and 2(b), a
critical energy E, is evident (see arrows). For E & E„
levels are irregularly distributed and bandlike, while
for E & E, they consist of stairs of well-separated
clustered (localized) levels. E„showing little depen-
dence on S for S » 1 [compare two-level diagrams in
Fig. 2(a)], decreases as the nonintegrability parameter
o- approachs 0. In Fig. 2(c), E, coincides with the en-
ergy of the quantum ground state and only regular
stairs of clustered degenerate levels are observed,
where degenerate levels can be classified by a new
quantum number [eigenvalue of T2 = (g1= tS, )2].
The coexistence of bandlike regions and clustered (lo-
calized) regions for o. & 0 is reminiscent of Anderson
localization. 7 Although the present system, Eq. (1),
includes no extrinsic randomness, the intrinsic chaos
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FIG. 1. Projection onto the (Sf-Sf ) plane of the Poincare
surface of section for o-= —0.3. Five orbits with initial
angles P = nm/50 (n = 1, 2, 3, 4, 5) are shown: (a)
E= —1.175. (b) E= —1.206. Only a single orbit with
P = 7r/10 is shown. (c) E = —1.210.

FIG. 2. Energy levels for S=222 with &=0, parity
=+1 and T = ~. (a) o. = —0.3; (b) o.= —0.1; (c) o-=0.0.
Energy levels for S = 16~ are also shown in the inset of (a).
Energies are scaled by S(S+1).
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(nonintegrability) may play a similar role: Irregular
level distributions and stairs of clustered levels in Fig.
2(a) are quantum manifestations of the classical chaos
in Figs. 1(b) and 1(c) and of KAM orbits in Figs. 1(a)
and 1(b), respectively. Direct one-to-one correspon-
dences between quantum irregular spectrum and clas-
sical chaos, however, cannot easily be established, 8

although regular stairs of clustered levels in Fig. 2(c)
are obviously quantum counterparts of periodic orbits
in the integrable (o.= 0) classical case.

To evaluate the sensitivity of eigenvalues to the
nonintegrability parameter o-, we calculate the
second-order differences b, 2E/Acr2 (i.e., the local cur-
vatures of the a.-dependent quantum energy diagram)
defined by

b, 2E [E(cr + b, o. ) —2E(a. ) + E(rr —Aa. ) ] . (4)+~2 (b, cr)'

This was originally proposed by Pomphrey, 9 but statis-
tical averages of Eq. (4) are examined in our study. In
the case of a. = —0.3 with Ao. = 5& 10, we present
the S dependence of (IA E/Arr2~), i.e. , the mean
value of ~52E/b, o-2

~, and that of the standard deviation

((g2E/g~2 (g2E/g~2) )2) 1/2

in Figs. 3(a) and 3(b), respectively. Here, angular
brackets imply the average over levels within indi-
vidual energy ranges in Figs. 3(a) and 3(b). For
E & —0.75, both the mean value and standard devia-
tion basically grow with increasing S. For —0.75~ E & —0.25, on the contrary, the possibility of their
growth with S can hardly be expected despite the pres-
ence of spikes in histograms. For E ~ —0.25, increas-

g(AS)/g(S) = A' ( (6)

where A is an arbitrary multiplicative factor.
p(o. ) = 4.69 in the range —1.25 ~ E & —1.0 for
o- = —0.3 and increases when o. approaches 0 so long
as the energy range lies below E,'(o-). p & 0 suggests
a fractal nature of the o.-dependent quantum energy
diagram for S » 1, which corresponds to classical
chaos. On the other hand, p(o. ) = —0.13 and —0.71

10-

ing S keeps the mean value almost constant and de-
creases the standard deviation. In our classical treat-
ment for a. = —0.3, widespread chaos can be observed
only for E & —Q. 75 and particularly for —1.25 & E
& —1.0, as suggested in Figs. 1(b) and 1(c). There-

fore, E,'( ——0.75), below which the statistical aver-
ages of 52E/b, o.2 grow with increasing S, might be a
more promising critical energy than E, [ ——0.25; see
Fig. 2(a)] in characterization of the quantum version
of classical chaos.

Finally we define a dimensionless standard deviation

g S —= ( (g2E/gtr2 (g2E/grr2) )2) 1/2

)(~'E/S~') (

5

In the common range —1.25~ E & —1.0 where the
average is taken, the S dependence of g(S) is shown
in Fig. 4 for o = —1.0, —0.3, —0.1, and 0.0. In the
range —Q.25~ E & 0.0, the similar dependence for
o. = —0.3 is also given. The former and latter ranges
lie below E,' [more precisely, E,'(rr) ] except for
o- = 0.0 and well above E,', respectively. Figure 4 indi-
cates the existence of a scaling law of the form
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FIG. 3. (a) S dependence of (~52E/Ao. 2~). (b) Sdepen-
dence of ( [(62E/Aa) —(6 E/Aa. 2) ]2) ' 2. Lo.wer-energy
side ( —1.5» E~0.0) is divided into six energy ranges,
while the higher side (0.0~ E~ 3.0) is divided into two
ranges. In the histogram in each energy region,
S = 8~, jL2~, . . . , 32~ from the left at intervals of 4. Ener-
gies are scaled by S(S+ I).

FIG. 4. S dependence of g(S) in logarithmic scales.
Average over —1.25~ E & —1.0: line a, a. = —1.0 (cir-
cles); line b, a-= —0.3 (open triangles); line c, a-= —0.1

(squares); line d, cr =0.0 (crosses). Average over —0.25 ~
E ~ 0.0: line b', o- = —0.3 (filled triangles). Energies are
scaled by S(S+1).
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in the ranges —0.25~ E & 0.0 for a. = —0.3 and
—1.25~ E& —1.0 for o-=0.0, respectively. P~O
implies a smooth o--dependent energy diagram for
5 » 1, which corresponds commonly to classical
KAM tori and periodic orbits.

In conclusion, the semiclassical quantum irregular
spectrum of a corresponding chaotic lattice spin system
demonstrates a situation reminiscent of Anderson lo-
calization. The dimensionless statistical average of
second-order differences of eigenvalues exhibits in
large-spin regions a scaling behavior, with the ex-
ponent strongly dependent on the nonintegrability
parameter a-.
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