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Critical Localization in Two-Dimensional Landau Quantization
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The localization in two-dimensional disordered electron systems in strong magnetic fields is in-
vestigated by the finite-size scaling method. The scaling function numerically obtained for macro-
scopically long systems shows that the single-parameter is invalid. The inverse localization length is
found to have a novel critical behavior near the center of the Landau band, in which the Landau-
index —dependent critical exponent determines the behavior of conductivity,
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The current interest in the quantized Hall effect'
leads naturally to the question of how this quantum ef-
fect is related, in the single-particle picture, to localiza-
tion in the two-dimensional (2D) system. It has been
shown that both localized and extended states are re-
quired for the effect, since the plateau in the Hall con-
ductivity (o-~) as a function of electron concentration
comes from the localization, while the progressive
quantum steps in the conduction necessitate mobile
carriers. From the scaling theory, on the other hand,
it has been shown that all the states are localized in the
absence of magnetic fields in the lower critical dimen-
sionality of 2. Thus the problem arises as to whether
the change of the universality class of the system from
orthogonal (H = 0) to unitary (Ha0) by introduction
of a magnetic field (H) can alter the behavior of local-
ization.

The studies on localization in the Landau levels in
strong magnetic fields with disorder include the
Thouless-number study4 and the gauge-transformation
study. 5 These results suggest that the inverse localiza-

I

tion length [a(E)] in this system is continuous and
touches ot= 0 axis at a single energy, which is the
center of Landau level. In this Letter, this anomalous
situation, which is one of the critical manifestations of
the peculiarity in 2D systems in magnetic fields, is
studied in detail. Since no expansion parameters like
1/E„r exist in the present system, the diagrammatic
method is ineffective unless it is performed up to in-
finite order. The result6 of a partial summation in fact
differs qualitatively from the numerical results.

The finite-size scaling can be a powerful approach to
the Anderson-localization problem. In the absence of
magnetic fields, MacKinnon and Kramer employed
the method to derive scaling functions in two and
three dimensions which are consistent with the
theoretical prediction. Here we employ the finite-size
scaling idea to study localization in the Landau levels.
Our method is a natural extension of the original for-
malism, which is restricted to tight-binding Hamilton-
ians with only nearest-neighbor interactions. By con-
trast, the Hamiltonian for the electrons in 2D continu-
ous space is given by

W = XI») (N+ —,
' )&~, (Nxl+ XX I») (» I

&IN'x') (N'X'I.
NX NXN X

with the Landau wave function INX), to, —eH/mc,
and a random potential V. If we consider the quantum
limit, in which interactions between different levels
can be neglected, ~ has matrix elements between
INX) and INX'), for IX—X'I & I+ within the Nth
Landau level. Here Itv= (2N+1)'I l with cyclotron
radius l = (ct/eH) ' 2, and the center of cyclotron
motion, L, takes discrete values with a spacing
hX = 2' l2/L» for a system of width L». The finite-size
scaling procedure for the present system may be sum-
marized as follows. We start by dividing a long strip of
width L~ into cells such that the next-nearest-neighbor
intercell interactions can be neglected. We define the
Green's function, G(n) = (z —Hi "i) ' with g(n)
= (n I G(n) I n) and G(n) = (1 I G(n) I n), where I n)

I is the set of states belonging to the nth cell, and Ht")
is the total Hamiltonian for the strip of n cells exclud-
ing the intercell Hamiltonian, H„„+i. We can then
obtain a set of recursion formulas in a matrix form,

G(n+ 1) = G(n)H„„,g(n+ 1),
g(n+1) = [.—H„„—H„„„g(n)H„„„]-',

with intracell Hamiltonian H„. Thus we can calculate
the off-diagonal Green's function, G ( n + 1), for arbi-
trary n by iteration starting from G (1)= g (1)
= (z —Ht) with numerical procedure limited only
by computation time. The inverse localization length
may be obtained by

Ict(E,L») = —lim [2(n —1) ] 'ln[Trl G(n) I2].
fg~ oo
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FIG. 1. Log-log plot of numerically obtained n(E, L»)L»
vs L for N = 0. Errors in the ensemble-averaged value of

]
o. , which are typically 1% for L~=16 and 0.1% for L~= 4,
are smaller than the size of each datum point. The arrow in-
dicates the asymptotic value of a L» = vr/2 for L» 0.
Curves are guide to the eye.

We have performed the calculation for the first two
(N=0, 1) Landau levels for long strips along the x
direction for the width ranging from L» = —, to 16 with
dimensionless L»= L»/(2m. l)'i in periodic boundary
conditions along y. The length of the sample, which is
taken to be 513001, is a macroscopic size ( —0.4 mm)
much larger than real MOSFET systems for typical
H=10 T with /=81 A. This length is sufficient for
which the value of n converges within an error of 2%.
Note that the only relevant parameter in our problem
is the energy for a given Landau band in contrast to
the case of usual random systems, in which the degree
of disorder as well as energy are the relevant parame-
ters. This comes from the fact that, if we consider the
case of dense, short-range scatterers as the random po-
tential (white-noise limit), electronic structures of the
Landau level broadened by disorder are similar once
the energy is normalized by the broadening, I o.s In
the present study, we consider this case with equal
number of attractive and repulsive scatterers (of con-
centration 40/2m l2) to make the electronic structure
symmetric about the band center. We normalize the
energy by the band width, I', for every L».

The L» dependence of a(E,L») L» is plotted in Fig. 1

for various E It is c.learly seen that, in the present
system, there is no single-parameter scaling relation,
n(E, L») L» = ft (n (E)L»), where n (E) = lima(E,
L» ~) and ft is a hypothetical function indepen-
dent of E.

It is not surprising that an introduction of magnetic

fields should destroy the single-parameter scaling, be-
cause the limits L» 0 and L» ~ in fact represent
two different universality classes, i.e. , orthogonal and
unitary, respectively. In the limit L» 0, the Hamil-
tonian, which has nonvanishing matrix elements only
between nearest-neighbor basis functions ((Xi ViX
+AX) ), can be cast into a real one for a one-
dimensional chain. We can then obtain the exact
asymptotic form for n(E, L») for L» Q. From the
exact formula9 for the localization length in 1D sys-
tems, we have

nL» n/2+ (L»/2ml )F(E)

F(E) =
J dE'Do(E')»12(E —E')/r i,

where Do(E) = (2/m)' 2I 'exp[ —2(E/1 )2] is the
Gaussian density of states in the limit L» 0. For
L» ~, on the other hand, we have n (E,L») L»

n (E)L». Thus, as is shown in the result, aL»
cannot be a monotonic function of L» when
iE/I i ( 0.64 [and n (E) )0], since, although F(E)
is negative for these energies, n(E, L»)L» for E~O
eventually starts to increase for sufficiently long L .
This explains why studying too small sample sizes 0

could mislead to a two-branched scaling function with
false mobility edges. Breakdown of the conventional
single-parameter scaling in the present system has
also been discussed by Pruisken and co-workers, "'2
who point out that, in the unitary nonlinear o. model,
the origin of the second parameter lies in the o-~ term
similar to the II vacuum in the Yang-Mills theory.

Having found that the single-parameter scaling is in-
valid, we seek the full description of the finite-size
scaling function with a second variable involving the
magnetic length, l. We have determined n as a func-
tion of E and L» by fitting the numerical result by Pade
approximation (Fig. 2). We have first fitted the ratio,
y(EL») =—n(EL»)L»/a(O, L»)L», which is monoton-
ic, and then fitted n(O, L») L», which may be approxi-
mated by a(0.05I,L») L» within the numerical accura-
cy. We note that absence of a single-parameter scaling
for y as seen from Fig. 2 implies absence of a separ-
able scaling, nL = ht(a (E)L») h2(L»/l). In fitting
y(E,L») and n(O, L )L», we can specify their correct
L» 0 asymptote Eq. (1)] and L» ~ asymptote.
For large L», y(E, L») becomes proportional to n (E),
while n(O, L»)L» can be assumed to approach a con-
stant from the numerical result. This is consistent
with the result that n (E) reaches zero at E = 0, since
aL~ is shown to converge to a constant at such a criti-
cal energy. 7 We have confirmed by a series of Pade
formulas [e.g. , (3, 2), . . . , 5, 4) Pade approximants
for y] that the least-squares fitted value for n (E)
shows no systematic dependence on the model func-
tion employed.

From the result for n (E) for N = 0 (Fig. 3) with
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FIG. 2. Log-log plot of n (E,L»)/n (O, L») vs L» for N = 0.
The curves are the least-squares-fitted results by the (3,2)
Pade approximation. Here n(E=O) is approximated by
n (0.01I').
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with s & 2, i.e. , we have indeed an anomalous situa-
tion, in which the localization length is finite every-
where except at the center (E= 0) of the N =0 Lan-
dau level. Similar analysis for the second (N= 1)
Landau level'3 is consistent with the power law,

(E)~ i E i', with s & 4 and E measured from the
center of this band, although we cannot rule out a mo-
bility edge at a small but finite iEi due to an uncer-
tainty in the form of n (O,L») for N = l.

The critical behavior, Eq. (2), is crucial in determin-
ing the physical quantity including transport properties.
Specifically, we can show that s determines the low-
temperature behavior of the dc conductivity (o. ).
Consider o. (T) at temperature Tgiven by an integral
of ( —Bf/BE)o. (E). In the presence of inelastic
scatterings, the integrand o- (E) has appreciable mag-
nitude in an energy interval b, E for which the localiza-
tion length exceeds the inelastic scattering length, L, .
The limiting value, o. (T 0), at the band center is
finite or vanishes like Tx ' according as A. ~ 1 or
A. ) 1 when b, E —Tx. We can estimate L, by L,2—D'r„where r, is the inelastic scattering time and
D"—(2N+ 1)l2/r is the diffusion constant in the ab-
sence of localization effects with relaxation time
7 —h/I . We can estimate another cutoff length, for
which the average level spacing, 2m. l /D(EF)L,2, is
comparable with the inelastic level broadening, f/v, .
For either estimate we end up with L, —(r,/r)'l with
the second cutoff length being more effective for

E/f
FIG. 3. Log-log plot of n (E) vs E (measured from each

band center) determined by the Pade fit for N = 0 and 1.
The error bars represent + twice the standard deviation,
and the broken line represents n (E)~ E2 The crossed er-.
ror bars are the result of the Thouless-number study (Ref.
4).

higher N. Thus, when r, —T ~ at low temperatures,
AE —T~l2'. Since p=2 for Fermi liquids for H=O
and p= 1 in the dirty-metal limit, '4 ts p is considered
to be close to unity in the present system in which
momentum conservation is unimportant. Then a- is
finite at the band center and zero elsewhere for T 0
in the lowest Landau level for which s = 2 and
p/2s & 1. Note that the Hall conductivity, cr~, on the
other hand, is always a step function at the band center
for T= 0 as long as delocalized states exists.
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