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Time-Resolved Nonlinear Spectroscopy of a Fermi Doublet:
The {v,, 2v,} Fermi Resonance in CO, Solid
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It is shown that the intramolecular Fermi doublet {v,2v,} in crystalline CO, arising from
resonant anharmonic coupling between a single-phonon state and a quasibound two-phonon state
can be coherently driven and its dynamics determined by time-resolved nonlinear optical tech-
niques. Coherence relaxation times for both components of the doublet are measured between 9 K
and the fusion point (217 K). A mechanism for loss of coherence is proposed which involves

modulation by low-lying intermolecular modes.

PACS numbers: 63.20.Dj, 42.65.Cq, 78.30.Gt

Anharmonic phonon processes can have a profound
influence on the spectrum of vibrational motion in
condensed matter. A striking example is the bound
two-phonon state which splits off the two-phonon con-
tinuum and frequently exhibits a nonnegligible in-
frared or Raman oscillator strength. This last feature
was recently exploited”? to coherently drive these
states and follow their subsequent evolution with
time-resolved nonlinear optical techniques.

In this Letter we extend and apply these techniques
to a quite different manifestation of phonon-phonon
interactions which has an important influence on both
one- and two-phonon states. It arises from hybridiza-
tion of nearly degenerate single-phonon and quasi-
bound (or bound) two-phonon states’=® mediated by
their coupling via the third-order term H () in the usu-
al series expansion’ of the lattice Hamiltonian,

H=Hyym+ H® + H® )

while the fourth-order term forms the quasibound
two-phonon state on top of the two-phonon continu-
um. This causes a transfer of infrared or Raman oscil-
lator strength from the strong one-phonon line to the
weaker quasibound two-phonon transition and results
in a double peak in the vibrational spectrum whose
two components split off on either side of the two-
phonon continuum. At a molecular level this effect
bears the joint signature of a Fermi resonancé® and a
Fano interference and is particularly favored in molecu-
lar crystals,® % 10 the CO, crystal offering the classic ex-
ample.

It is shown here that both components of such a
Raman-active doublet can be coherently driven and
their dynamics investigated with time-resolved non-
linear optical pump and probe techniques, as the two
hybrid states share properties of both parent states, in
particular, the strong Raman line strength of the
single-phonon state and its intramolecular (local) char-
acter.

The experimental demonstration reported here con-
cerns crystalline CO, where Fermi resonance occurs
between the symmetric Raman-active stretching mode

vy and the first overtone 2v, of the doubly degenerate
infrared-active bending mode, as the overtone fre-
quency (), falls very close to the unperturbed w; fun-
damental frequency. These modes and their mutual
interaction result from intramolecular motion, well lo-
calized on individual molecules, so that disregarding
all other modes the relevant states are as follows:
|00), the ground state; |10), the first excited state of
mode 1; and |O2), the quasibound two-phonon state
or overtone mode 2. We denote by g; and Q= gq?
the vibrational coordinates of mode 1 and overtone
mode 2, and by w; and ), their transition frequencies,
respectively. These two states interact through the
third-order anharmonic term h12=6122q1q22=6122
X q107 whose only nonvanishing matrix element is
KB =(10]h1,|02).

Coupling of the vibrations ¢g; and Q,, with the total
light field E=E; cos(w;t) + Egcos(wgt), with wjp
—wg supposed near resonance, is mediated by the
first-order Raman tensor of mode 1, ai” and the
second-order Raman tensor of mode 2, azz), through
h = —+aFE? with a=ap+ afV + -;-ocﬁz)q%.

The evolution of the system is described by the
equation of motion of the density matrix operator:

9 _ 1 : 8p
or ih[h0+h12+h,p]+ E)IL (2)

As a consequence of (2) the coordinates q; and Oy,
build up amplitudes

(q1) =Trpg;=(00lq,110) (po; + p10),

(Q2) =TrpQrn=(00]02,102) (po; + p20)
where the relevant matrix elements of p satisfy

ipo1= — w1po1 —Bpo2— 1 E> = ipory1,

ipo2= — Qapo2—Bpor — %2 E*— ipoyy2

and their Hermitian conjugates, where y; and vy, are
phenomenological damping factors for pg; and pgp,
respectively, and a, = a " (0lg2|n)/n(n=1,2).

The observable hybrid mode frequencies (), and
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Q _ and amplitudes Q, and Q_, respectively, are ob-
tained by a unitary (rotational) transformation u de-
fined by

[Q+ (q1) | cosb sin6 (q1) -
0_) (00|~ | —sind cost||( Q)
which is equivalent to a rotation by an angle 6 such
that
w1 B Q+ 0
u ul=
B Q, 0 Q_

or (Q,— Q;)sin20 + 28 c0s20 =0 so that O, and Q_
satisfy

Q447404 -T'0_+0%0,=4,F,

4
Q_+T_Q_-T'Q,+Q20_=A4,F?
which equations are coupled by I'' and,
A1 aq F+ F’ Y1 0 1
A2 =ua2; F’ F_ =ll0 ‘}/zu : (5)

The frequencies Q , and ) _ are the same as those
obtained by Green’s-functions methods®>° when the
phonon-branch width is small, a common situation for
optical modes in the molecular crystals under con-
sideration here.

The coupled equations (4) provide an intuitively
simple picture of the coherent excitation of the two
hybrid modes. Their coupling is provided by dissipa-
tive terms with 2I'" = (y; — y,)sin268. In the frequency
domain solutions of (4) are approximately those of
harmonic oscillators!®-12 with frequency-dependent
damping. The amplitudes Q, and Q_ can be probed

PD

with a field E” at frequency w, to yield anti-Stokes sig-
nalsat o f =w,+ Q4 and ws =w,+ Q _ through the
nonlinear polarization term Py =N(A4,0.
+A_Q_)E' + P,, in exact analogy with one-vibron
processes.

We have performed the first demonstration of such
time-resolved picosecond coherent anti-Stokes scatter-
ing on the {7, ,7_} Fermi doublet of crystalline CO,
which arises from anharmonic coupling of the nearly
degenerate v, and 2v, states® 314 leading to hybrid
frequencies 7, =1383 cm~! and #_=1276 cm™'
bracketing the two-phonon continuum. The CO, crys-
tals, which were grown by a seeding technique in a
specially adapted cryostat, were of sufficiently high
quality to allow cooling down to at least 77 K without
severe optical degradation of the sample.

The experimental system shown in Fig. 1 is driven
by a single 5-ps pulse produced by a cavity-dumped,
passively mode-locked Nd3+—doped phosphate-glass
oscillator and subsequently amplified to a 2-GW power
level and doubled in frequency to 527 nm. This green
beam is then split into three parts, the first of which is
rotated in polarization by 90° and serves as a probe of
the vibrational overtone coherence. The other two
parts pump two Raman generators, Stokes 1 and
Stokes 2, employing deuterated methanol and water,
respectively, to provide a suitable frequency differ-
ence, ws, — ws, With wg, broad band, for excitation of

the relevant CO, vibrations _ and Q.. This
method has the advantage of pushing excitation-
related noise into the red and allowing additional
frequency-selective noise discrimination, especially
important for cryostat work.

Figure 2 shows the experimental results for the Q
line of CO, solid at 215 K. The dynamic measurement
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FIG. 1. Experimental setup: A/4, quarter-wave plate; NA, nonlinear absorber; KDP (potassium dihydrogen phosphate),
frequency doubler; F, filter; PD, photodiode; D, delay line; L, lens; FP, Fabry-Perot; A, aperture; A/2, half-wave plate; P,
Glan polarizer; S, cooled sample; XP, crossed polarizer; SP, monochromator; and PM, photomultiplier.
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FIG. 2. Coherent anti-Stokes signal plotted on a loga-
rithmic scale vs probe delay in picoseconds, for the Q.
component of the Fermi doublet in CO, solid at 215 K.

range of 10* for an in situ grown cryogenic solid is
noteworthy, and the observed exponential decay of the
vibrational coherence yields I'7!= T;" =12.5 ps. Ex-
ponential decay is maintained for both components
Q4+ and Q_ over the whole temperature range con-
sidered from 9 to 245 K where CO, is liquid ( 7T,=217
K).

Figure 3 depicts the temperature dependence of T,
and I' _ for the components Q , and Q _ of the Fermi
doublet up to and across the solid/liquid phase transi-
tion, where we plot the observed decay rate 2I" + as a
function of temperature. Both lines exhibit a strong
temperature variation of more than a factor of 2.
Another striking feature to remark is that the I' . and
I" _ curves appear parallel and exhibit two regimes.

At low temperatures the loss of coherence of these
coupled modes may occur through their mixing with
the free two-phonon continuum states!"? or isotope-
induced disorder, but at higher temperatures a new
mechanism becomes dominant; that is, the time fluc-
tuations of the transition frequencies of the in-
tramolecular modes w; and ,, or equivalently € ,
and Q _, as a result of the intermolecular degrees of
freedom of the lattice. The CO, crystal belongs to the
space group T,,6 with four molecules in the unit cell on
S¢ sites and there is a large number of low-frequency
modes representing the rotational, librational, and
translational intermolecular motions. As the reduced
Hamiltonian actually depends on the relative config-
urations of the molecules in a unit cell it can be writ-
ten to a good approximation 4 (q;,05,0;), where we
explicitly introduce the functional dependence on the
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FIG. 3. Variation of the measured relaxation rates 2I' ,
and 2I'_ with temperature for the Q. line (full circles,
solid; open circles, liquid) and Q _ line (full squares, solid;
open square, liquid) of the Fermi doublet in CO,, respec-
tively. The dashed line indicates the phase transition. Note
the scale change between solid and liquid. The solid lines
are theoretical curves calculated wusing T+=k4+
+ kn(n+1) where nis the Bose factor for a low-frequency
phonon (< 100 cm~!) and k + represent the temperature
independent residues (see text).

amplitudes Q; of these intermolecular modes. This
produces a parametric dependence on Q; of the in-
tramolecular frequencies w; and Q, which become
time dependent, since the Q; are dynamical variables.
Taking into account the symmetry of the crystal and
the fact that w; and Q, were calculated at the equilibri-
um configuration of the intermolecular positions we
may set w;(Q;) =w;+8w;(Q;) where to lowest order
dw=3k;0,;0; and similarly for Q,. Assuming Mar-
kovian processes one finds

'yl=f_m°°(8w('r)8w(0)) dr — Eijn,-(nj+l)|k,712,
(6)

where #; is the phonon occupation number for inter-
molecular mode i/ at a temperature 7 and the modes i
and j are such that Q,— Q;=0. Thus uniquely
energy-conserving mechanisms are involved and the
above expressions only describe pure dephasing of the
states. The predicted temperature variation is very in-
sensitive to the frequency of the intermolecular modes
involved in (6) and a single-parameter fit, the same
for both curves, explains well the observed I' ;. and I" _
results and in particular the long coherence times at
low temperatures. Clearly for very low temperatures
additional mechanisms must be taken into account
providing a temperature-independent residue.

In conclusion, we have shown for the first time that
anharmonically coupled single-phonon and quasibound
two-phonon states can be coherently driven with high
efficiency and their dynamics selectively studied in the
time domain using nonlinear optical techniques. This
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also provides a flexible method for creating phonon
pairs as the coupling can be modified by temperature,
frequency, pressure, or other physical variables and a
wide range of conditions in the parametric interaction
of phonons can be accessed, and polariton effects*
should also be observable. Furthermore, the above
considerations are not limited solely to intramolecular
vibrations!'® but should apply equally to acoustic pho-
nons.

Laboratoire d’Optique Quantique is a laboratoire
propre du Centre National de la Recherche Scientif-
ique.
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