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Analysis of Light-Scattering Measurements Near a Cloud Point
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An analysis is reported of earlier light-scattering measurements by Wong and Knobler on a liquid
mixture undergoing phase separation. When the system was quenched into the two-phase region to
a temperature near the cloud point, the growth of intensity with time displayed two characteristic
regions: an initial rapid rise followed by a sharp crossover to slower growth. It is shown that such
behavior is consistent with the predictions of the Langer-Schwartz description of the homogeneous
nucleation and growth of droplets.

PACS numbers: 64.70.Ja, 64.75.+g

Experimental studies of nucleation in binary liquid
mixtures in the neighborhood of a critical solution
temperature' have revealed apparent anomalies in
the nucleation rate and have stimulated several
theoretical investigations of the nucleation and growth
of droplets in near-critical mixtures. The most suc-
cessful of these theories is that of Langer and
Schwartz, who amplified a suggestion by Binder and
Stauffer5 that the anomalies were the result of the crit-
ical slowing down of growth rather than a gross depar-
ture of the nucleation rate from that predicted by the
classical theory.

The Langer-Schwartz (LS) theory predicts that the
character of the nucleated phase depends sensitively
on the initial supersaturation. The phase may appear
as a cloud of small droplets that grow slowly beyond
the critical droplet size, or it may form as isolated
droplets that rapidly grow to very large size. The aver-
age droplet size grows in a complicated fashion that
resembles power-law behavior during limited periods
of time and asymptotically approaches the t' growth
law predicted by the Lifshitz-Slyozov model of diffu-
sive growth.

The LS theory has been used in the analysis of
several experiments on liquid mixtures and on solid
mixtures as well. These applications have not been
decisive tests of the theory, however, and have shown
only that the experiments are not inconsistent with it.
A recent measurement of the nucleation rate by a
technique that makes it possible to decouple nucle-
ation from growth has demonstrated that the nu-
cleation rate is not anomalous near a critical point, but
did not test the arguments concerning growth.

Recently, Simon' has studied x-ray scattering from
a binary alloy undergoing phase separation. He ob-
served that at low supersaturations the intensity at the
scattering maximum showed two distinct regimes of
growth, both of which could be fitted by power laws.
The rise of intensity at early times was steeper than
that at late times, and the transition between the two
regimes was sharp. The average size of the regions of
precipitated phase, as indicated by the position of the
scattering maximum, grew relatively slowly with time.

Similar behavior was observed by Wong and Knob-
ler" in their study of light scattering from isobutyric
acid plus water mixtures that were undergoing phase
separation. After this system was quenched into the
two-phase region, a characteristic ring of light scat-
tered in the forward direction appeared; it grew in in-
tensity and decreased in diameter with time. For most
of the quenches studied, the rise in the intensity exhi-
bited a simple power-law behavior, but in two of the
quenches (labeled P and L) there were two regimes of
growth, which were described as having "dog-leg"
behavior, Fig. 1. These quenches were also distin-
guished by the low value of the power-law exponent
describing the ring collapse. Wong and Knobler sug-
gested that this distinctive behavior arose because the
phase separation was occurring close to the cloud
point, the supersaturation that is the practical limit of
metastability, but they offered no arguments to sup-
port the conjecture. The fact that Simon's observa-
tions were also made in the vicinity of the cloud point
suggests that the conjecture was correct. In this
Letter, we report the results of some approximate cal-
culations based on the LS theory that also support this
conclusion.

Calculations with the LS theory are most conven-
iently carried out in terms of reduced variables. The
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FIG. 1. Intensity (arbitrary units) at the scattering max-

imum as a function of time for quenches K, L, and P. In-
tensity scale factor for K not identical to that for L and P.
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reduced number density of droplets n, average droplet
radius p, and nucleation rate J can be calculated as a
function of the reduced time ~ and the initial super-
saturation y&. Once y1 has been specified, the evolu-
tion of the other variables with time can easily be com-
puted by the numerical solution of the differential
equations

dp/d7. =(p/p' —1)/p + J(a —p+ p')/n + bdp'/d7,

dn/d~ =J —nb (d p'/dr)/(p —p'),

where a and b are constants, p'( = 1/y) is the critical
droplet radius, and J is given by

J = 3.08y2/3(1+y) ' exp( 1/y )

To compare the calculations with the light-scattering
measurements, we assume that the intensity at the
scattering maximum is proportional to np and that
the wave number at the maximum k is proportional
to p '. The first of these approximations is exact for
scattering by droplets whose diameter is very small
compared to the wavelength of the scattered light. '

This is not the case for the conditions of the quenches
studied by Wong and Knobler, but it remains a reason-
able first approximation. Comparisons between opti-
cal-microscope measurements of droplet sizes and con-
current light-scattering studies' have demonstrated
the validity of the second assumption.

The behavior of the intensity of the scattered light
and the droplet diameter can easily be derived for two
special cases. At early times, the supersaturation has
not decreased appreciably and J, which is a function
only of y, therefore remains constant. This is a period
of free growth during which p increases as ~' and n

as v", hence the intensity should increase as 7 . At late
times, p grows as 7' and n decreases as 7", the intensi-
ty therefore is proportional to ~. Thus, power-law
plots of the rise of intensity with time might be expect-
ed to have at least two distinct regions, one of large

slope at relatively early times, and another of smaller
slope at late times.

Figure 2 shows the calculated variation of n p with 7.

for yi = 0.24, a value of the initial supersaturation that
corresponds to quench L; the corresponding variation
of p with ~ is plotted in Fig. 3. Over this range of re-
duced times, which starts at the initial stages of growth
and extends to a point at which the supersaturation has
fallen to 0.1 of its initial value, the "intensity" dis-
plays a sigmoidal dependence on time that can roughly
be described by three regions of power-law behavior.
The behavior of p is more complex, as already shown
by LS.

Similar plots for ye=0.34 and ye=0. 50 are also
presented in Figs. 2 and 3. These values of y1 corre-
spond to quench P and to quench K, which did not
appear to show the dog-leg behavior but is the shallow-
est of the quenches that was thought to have a single
power-law growth of the intensity. It is evident that as
yl increases the marked high-slope intermediate region
of the intensity curve diminishes; it is barely distin-
guishable at y1= 0.50. At the same time, the position
of the second distinct break in the curve shifts slightly
to earlier times. The sigmoidal shape of the I-7- curves
is attributable to the maximum that occurs in the
number density (Fig. 6 in LS) and the associated steep
rise in the droplet diameter. Only a trace of the inter-
mediate high-slope region can be seen for quench L
because there is no pronounced maximum in n for this
initial supersaturation.

The dog-leg character of the experimental intensity
curves would appear to correspond to the second break
in the calculated curves. To examine this supposition
we must convert the calculated curves to real time.
The relation between the time scales is given in terms
of the critical amplitudes for the diffusion constant and
correlation length, Do and $0, the relative distance
from the critical solution temperature, e( = 1 —T/T, ),
the critica1 exponent, v, and xo, a substance-dependent
constant of order unity: ~= (doxo/24/0)e "t. For iso-
butyric acid plus water, ' Do = 1.51 x 10 cm s ' and
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FIG. 2. Calculated variation of n p with ~ for values of yI
corresponding to quenches K, L, and P. Horizontal lines in-
dicate time periods during which measurements were made.
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FIG. 3. Calculated variation of p with 7 for quenches K,
L, and P.
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TABLE I. Comparison between experimental and calculated characteristics of logI-logt
and logp -logt curves.

Quench

I2

(meas. )
(s)

f2

(calc.)
((s)

//
a~

(me as.)

//
a~

(calc.)

//
02

(meas. )

//
02

(calc.)

/

(meas. )
a'

(calc.)

K
L
P

35
100
70

27
70
76

1.5
3
2.2

1.5
4.5
1.9

1.08
0.52
0.61

1.06
0.61
1.02

0.31
0.18
0.27

0.34
0.21
0.38

go=1.8x10 cm; we take v=0.62 and xo as 1.07, a
value that provides the best fit to recent nucleation
studies.

The experimental and calculated features of the
three quenches are compared in Table I, which gives
the positions in time of the kinks in the logI-logt
curves, and the slopes of the straight lines that can be
drawn through the segments of the curves. Relatively
few points were measured at early times, hence the in-
itial slopes are relatively uncertain; the lines have been
drawn by eye, since there are too few points for least-
squares analysis.

For quench P, the measurements were carried out in
the period from 30 to 160 s after the quench. By draw-
ing straight lines through the segments of the calculat-
ed curves, we find that the break between the initial
slow growth of intensity and the rapid rise occurs at
rt =16 s, too early to have been seen, so a dog-leg
shape rather than the full sigmoid form is predicted.
The observed kink occurred at t2 = 70 s, in good agree-
ment with the 70 s found from the calculation. The
experimental and calculated initial slopes, at'(meas. )
and a t'(calc. ) agree well, but the slopes at longer time,
a2', are in poorer agreement.

Quench I. was studied from 50 to 1000 s after the
quench. Here the calculations lead to tj ——12 s, again
before observations were made. The calculated time
of the second kink, 70 s, is earlier than the 100 s ob-
served, but this is probably within the overlap of the
uncertainties in defining t2. The slope a&' is much
smaller than that calculated, but the slopes at long
times agree well.

Although Wong and Knobler considered quench K
to have a constant slope, the first two points measured
lie systematically low. If one connects these points
with a straight-line segment, the resulting kink occurs
at about 35 s, in good agreement with the calculated 27
s; the observed and calculated values of a&' and a2'
agree extraordinarily well.

The calculated p-v trajectories that correspond to the
supersaturations in quenches K, L„and P are shown in
Fig. 3. Over the range of times during which the ex-
periments were performed, the trajectory for quench K
closely approaches the asymptotic t' limit. Although

it is clear from the curves that a power-law description
is not correct, the experimental variation of k with t
was analyzed in this way and it is interesting to deter-
mine the exponent that best fits the calculated curve in
the region of interest. To ensure that the weighting of
both the experimental and calculated results is the
same, we have performed a least-squares fit to a data
set that consists of calculated values of the radius for
the same times at which k was measured. This fit
gives a power-law exponent a'=0.34, in good agree-
ment with the observed value 0.31. When the same
procedure is applied to the calculations that correspond
to quench L, we obtain a'=0.21 as compared to the
measured value a'=0.18. The agreement between
calculation and experiment is less satisfying for quench
I'; here we find a calculated slope of 0.38 while the ex-
periment yielded 0.27.

Wong and Knobler showed that k ' agreed well
with estimates of the droplet size. It is interesting to
see if this correspondence holds for the radii calculated
from the LS theory. In Fig. 4 we have replotted the
values of k for each of the quenches as a function of
the time' and added curves that represent the inverse
of the calculated average radius, R ' = xo/2gp. For
quenches K and P, the agreement is remarkably good;
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FIG. 4. Measured values of k (points) and calculated
values of the reciprocal of the average radius (lines) as func-
tions of the time.
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the relation of quench P to the other data is predicted
well, but the radii are too large.

In summary, we find that although the characteristic
features of the LS calculations do not agree quantita-
tively with those observed in the experiments, there is
sufficient agreement to lend strong support to the
model. It provides an explanation for the shape of the
I-t curves, their variation with quench depth, and the
corresponding low values of the exponent describing
droplet growth. Additional light-scattering measure-
ments on mixtures that have been quenched to the
neighborhood of the cloud point must be performed if
the theory is to be confirmed. Such experiments are
underway.
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The ordinate in the upper half of Fig. 13 in Ref. 11 is in
error and the values of k shown here for quenches I' and L
are therefore different. The error in the figure did not affect
any of the numerical values in the paper or any of the con-
clusions.


