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We propose a theory that a new type of magnetic reconnection, nonlinear driven reconnection, is
triggered during the nonlinear development of an m =1 helical kink-mode instability. This recon-
nection process can well explain nonlinear reconnection observed in the previous simulation and
can be a candidate for the self-reversal mechanism in the reversed-field pinch.

PACS numbers: 52.30.—q, 52.55.Dy, 52.55.Ez

In spite of its physical interest and practical impor-
tance in plasma confinement, the self-reversal process
in the reversed-field pinch (RFP) remains unex-
plained. Several causes leading to toroidal field rever-
sal have been suggested theoretically, numerically, and
experimentally.!~> Among them, Sykes and Wesson’s
simulation work® was the first to successfully demon-
strate that an m =1 kink mode could be a cause of the
reversal. However, any satisfactory causal mechanism
of how a reversed-field configuration develops has not
yet been presented, although this is essential in order
to understand the maintenance of the RFP configura-
tion. The purpose of this paper is to present a con-
sistent, dynamical model leading to reversal of the
toroidal field, by proposal of a new type of reconnec-
tion.

There is no doubt that magnetic reconnection plays
a key role in the relaxation and reversal process in the
RFP. Reconnection causes a local enhancement of
dissipation whereby the system can relax toward a
minimum-energy state in a time scale shorter than the
natural diffusion time. In addition, reconnection
causes a topological change in the magnetic field con-
figuration which is also essential in the obtaining of a
different equilibrium configuration.

There are two types of reconnection. One is linear
tearing-mode reconnection,® and the other is driven
reconnection.” Linear reconnection is expected to oc-
cur if and only if an antiparallel field configuration ex-
ists locally in the initial state. Tearing-mode instability
in tokamaks is such an example,® while driven recon-
nection can take place for a variety of magnetic field
configurations.’

In this paper we propose a theory that the self-
reversal of the toroidal field is caused by a new type of
magnetic reconnection stimulated by a helical kink in-
stability, which we call nonlinear driven reconnection.

For a better understanding of the following argu-
ments, we first describe the necessary conditions for
driven reconnection to take place. (1) The first condi-
tion is the existence of converging flows. Reconnec-
tion can take place at the converging point, if other
conditions are satisfied. (2) The second condition is
that antiparallel field components perpendicular to the
converging flows be brought into the converging point

by the flows. (3) The third condition is that there
should be no field component parallel to the flows at
the converging points. Existence of a field component
perpendicular both to the converging flows and the
antiparallel fields has nothing to do with reconnection.
Once these conditions are fulfilled, then reconnection
can be triggered at the converging (X) point and the
antiparallel fields are converted into pairs of antiparal-
lel fields which are parallel to the original converging
flows. The converted fields are taken away from the
converging point in the direction of the original anti-
parallel fields by the outgoing flows. Figure 1 shows a
topological relation of the field and flow directions as-
sociated with reconnection.

Since we are concerned with an m =1 single helicity
mode in a cylinder (7, 6, z), let us introduce a helical
coordinate system (r, A, Z) where r is the usual radial
coordinate, Z is the coordinate along the helical line
which is the ignorable coordinate in the present helical
symmetry problem (8/8Z =0), and A is an angle
coordinate which completes a right-handed coordinate
system.

We give the initial axisymmetric force-free magnetic
field and current in this helical coordinate system as
follows:

By = (0,B¢4,B0z), 1)
Jo=1(0,Joa,Joz). 2)
vV,
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FIG. 1. Geometrical relation of the driving plasma flow
and magnetic field in the driven reconnection process. Point
X represents the reconnection point. In the present model
the horizontal and vertical directions correspond, respective-
ly, to the radial and A directions.
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We note here that Bgy/Boz =Joa/Joz and that the un-
perturbed quantities with suffix 0 are all functions of r,
although no expression is made explicitly.

For later convenience, we here express the unper-
turbed field components in terms of those in the origi-
nal cylindrical coordinates:

By = Bggcos¢p — By, sing = By (1 — ng)cosgp, (3)
Bz = Bygsing + By, cose, ()]

where ¢ is the pitch angle of the helical mode under
study, » is the toroidal (axial) mode number, and q is
the radial ¢ profile. In the following discussion we
choose By >0, By, >0, and 0< ¢ < w/2, without
loss of any generality. With this choice it turns out
that By  is always positive but By, is positive only for
nonresonant modes. For resonant modes By, changes
sign at the resonance surface.

As an m =1 perturbed helical flux we assume
Y1 (r)cosA, where the direction of the radial displace-
ment is the A =0 direction. Then the perturbed mag-
netic field and current components are given by

B, (r,A)= —y;sinA/r, 5)
Bia(r, A) = — (8¢1/8r)cosA, (6)
Bz (r,A)=0, @
Jy.(r, A)=0, (8)
Jia(r,A) =0, 9
Jiz(r,A)=— A, cosA/ g, (10)

where A, =98%/0r2+r~19/3r —r =2 and ¢, (r) is abbre-
viated by .

Let us consider that the m =1 perturbation grows
with the growth rate y. Then the equation of motion
gives the perturbed radial flow, which is the driving
force for instability, as

pyvy, (r, A) = £(r)cosA/r, (11)
where p is the mass density, and
E(r)=r (A1 Boa/ o+ Joz001/0r). (12)

The first term on the right-hand side of Eq. (12) acts
to stabilize this perturbation, whereas the second term
can contribute to destabilize it. For this mode to grow
¢ must be positive and peaked around the magnetic
axis, because the radial displacement is assumed in the
A =0 direction. Since v, is the driving source, the A
component of the flow can be obtained by the assump-
tion of incompressibility as

pyvia(r, A) = — (9&/0r)sinA. (13)

We note here that 8¢/9r < 0.
Thus we have been able to express all quantities
necessary for discussing driven reconnection in terms

of the perturbed helical flux and unperturbed quanti-
ties. From Egs. (11) and (13) it is seen that both vy,
and v;, have potentiality to drive reconnection, be-
cause they have points where the flow convergence
condition, namely, condition (2) described earlier, is
satisfied.

Let us first see reconnection associated with vy,.
The second condition given earlier, namely, condition
(2), requires the existence of antiparallel A fields,
since reconnection is possible only on the r-A plane.
The A field has an unperturbed component, and so we
shall throw away the perturbed part for the time being.
In order to have reconnection, therefore, it is required
that there exists a resonance surface (r=rg). If
v, =0 and 9v,,/9r <0 are satisfied in Eq. (11) at
r=rg, then reconnection could be triggered there.
The m =1 tearing mode is such a case. However, here
we are interested in a different reconnection process
which is associated with the flow vy,.

From Eq. (13), the convergence condition of the
flow is satisfied at A=m where v, =0 and v,/
0A < 0. The magnetic field involved in reconnection
for this flow is B;,. Very interestingly, B, is an-
tiparallel with respect to A =1; thus the field condi-
tion for reconnection, namely, condition (2), is also
automatically satisfied for the m =1 kink instability
under study. However, there is no guarantee yet that
condition (3), namely, vanishing of the field com-
ponent in the converging flow direction, can be satis-
fied. This condition is given by

BOA(r)+BlA(r’7T)=0- (14)

Thus, the final question is whether or not there ap-
pears a radial point on A = 7 which satisfies Eq. (14).

As can be easily understood from the above argu-
ment, the process we are now interested in is non-
linear in the sense that both the corresponding flows
and fields are perturbed quantities. In the resonant-
mode case, as we are already discussed, the m =1
tearing-mode reconnection would be linearly excited,
so that the situation would become complicated. For
the time being, therefore, we shall forget the resonant
case, but focus on the nonresonant case where no
linear reconnection takes place. Since the radial dis-
placement is in the A =0 direction and the plasma is
bounded, it is obvious that the A component is
compressed in the front part of the displacement
(cosA > 0) and rarefied in the back (cosA <0),
namely, 9y;/9r < 0 in Eq. (6) and B;, is negative at
A =1 except in the central region. Thus it becomes
possible that Eq. (14) is satisfied, especially when the
perturbation grows into a large amplitude and the field
configuration is largely distorted.

Let us next consider whether or not the reversed
flux can be generated in the outer part of the plasma
column by this reconnection process, that is, whether
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or not a proper electric field is generated along the
reconnection line (along the Z axis). At the reconnec-
tion line, there exists no A component of the magnetic
field, as we discussed above. Thus, the only possible
driving electric field is associated with v;, and Bjy,.
This electric field is given by

Epz = 1(8¢/8r)sin?A. (15)

Obviously, this electric field is directed in the negative
Z direction. In driven reconnection”?® this field
penetrates into the X reconnection line in the presence
of resistivity, this giving the reconnection rate. The
negative-Z electric field generated at the X line acts to
take away the reconnected positive-A field radially
outwards and the negative-A field inwards (see Fig. 1).
In other words, as the present nonlinear driven recon-
nection process proceeds, the positive-A flux is gen-
erated in the outer region of the reconnection point
and the same amount of negative flux in the inner re-
gion. The generated flux is proportional to the square
of the perturbation amplitude. Since the A component
produces the axial component which is given by
B, = — B, sin¢, it is concluded that a negative axial
(toroidal) field is generated in the outer region by the
proposed new nonlinear reconnection process, and
hence, a reversal configuration can be realized. In-
cidentally, it is interesting to point out that the Z elec-
tric field associated with the tearing-mode reconnec-
tion in the RFP is positive, so that no generation of re-
versed flux in the outer region is expected for this
case.

The nonlinear reconnection process observed by the
previous simulation* for the nonresonant mode can
well be explained by the present theory. The second
reconnection process observed for the resonant mode
can also be explained along the same line, since it ap-
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peared after the resonant surface was completely re-
moved and a helically distorted configuration was
achieved by the m =1 tearing mode.

The proposed reconnection process has a marked
contrast with the conventional tearing-mode reconnec-
tion process in that this is a nonlinear driven process
and requires no resonance.
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