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Plasmon wave ackp ets are shown to be nucleated in narrow density holes which are the ry o a e the emnants
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ose o issipation precludes the possibility of a self-similar inertial range f 'de ran e of
parameters. The nucleation mechanism may also arise in other contexts
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In this Letter we show that the asymptotic state of a
system developing according to the damped and driven

akharov equations, under a wide range of conditions,
is sustained by a novel local caviton-nucleation mech-
anism. Trapped Langmuir electric fields are nucleated
in density cavities at spatial scales only slightly larger
than the dissipation scales, precluding a developed
inertial range with self-similar collapsing "solitons" as
proposed by some authors. ' This local nucleation
mechanism has further novel implications for trigger-
ing Langmuir turbulence by quasineutral density fluc-
tuations in the presence of large-scale driving mecha-
nisms whose time dependence is near the mean plasma
frequency.

Our analysis is based on the Zakharov equations
which model the interaction between the Langmuir-
wave envelope field E and the fluctuation, n, in the
plasma density. In dimensionless form these equa-
tions are for one spatial dimension3, 4

I (8, + v, )E+ d„'E = nE+ S ( t),

(t) 2+ 2t),v, —r)„') n = I) 'IE~'

The units of time, distance, electric field, and density
fluctuation are, respectively, —'(m/m )r0 ' —'( /

i/2m, ) &D„8(m noTem, /3m;), ' and no(4m, /3m;),
where no is the dimensional background density. The
Landau damping operators I, and I; are diagonal in k
space (spatial Fourier transform); in these units the
mass-ratio dependence enters only through v, and I;.
n a model appropriate for the description of laser-

plasma interaction, E =f E(x, t) dx/L is a constant Eo
which implies that the source S is given by S = —nE;
we call this the "clamped drive " [Note that
v, (k =0) —= 0.] To simplify the theoretical analysis of
the stationary state we assume that I. is large enough
compared to a correlation length so that 5 is a constant
in time. We will also consider the case where S=O
b«v, (k=0) = —vD ( 0 corresponding to a beam
unstable particle distribution with a high beam veloc-
1ty.

The modulational instability of long-wavelength
electrostatic or electromagnetic waves with frequencies
near the electron plasma frequency, ~~, has long been
recognized as a source of strong Langmuir turbu-

lence. 3 4 In Fi . ~
~ g. '- a time sequence of computer-gen-

erated solutions of the Zakharov equations in one
dimensions (with periodic boundary conditions) are
presented for the modulus ~E~2 of the Langmuir en-
velope field and the density perturbation n for a sys-
tem driven by a clamped drive at wave number k = 0
of intensity ED=1 in the units described above. This
system develops from a well defined sinusoidal global
modulational instability whose peaks begin to steepen
into cavitons. In Fig. I the electric field in one caviton
is driven to a stage of collapse to small scales—5h. n, ) where it suffers strong Landau damping so
that by T= 8.5 the electric field envelope has substan-
tially decayed (or "burned out") leaving a density cav-
ity essentially unsupported by its ponderomotive force.

he cavity then breaks up into left- and right-going
sound pulses, each with about half the depth of the
original cavity, shown at T=9.0, which continue to
propagate through the system at the sound d
(C I

soun spec
In our units). This part of the scenario has

been observed in several earlier simulation stud' s
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FIG. 1. Snapshots of ~IE(x, t) ~2 (dashes) and n(x, t) (solid
line) as functions of x for various times with a clamped drive
Eo = 1 and m;/ m, = 1836.
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(For clarity the eigenvalue index is suppressed. Also note that from here on in the text, brackets signify the Dirac
notation for vector inner product. ) It is a remarkable fact, found from the numerical solution of (5), that out of
the complete set of P s, E(x, t) in a given cavity is usually dominated by a unique eigenfunction, @p, which is local-
ized in that cavity and can be described as the local ground state. This localized eigenstate describes a trapped
Langmuir mode in the cavity. Consider a time interval in which $p and Xp evolve smoothly, and let

t. t
E(xt) = H(t) @p(xt)exp[ —i) A (t') dt']+ Ett (xt), (6)

where A(t) = A p(t) —iI p(t) and I p( t) = (Qplv, Igp). Then the equation of motion of His easily shown to be
eE

iB,H=expi„A(t')dt'„dx{@p(x, t) [S(t)—iv, E„(xt)]+iB,@p(x,t)E„(xt) I,

where Ett (xt) is orthogonal to @p. (@plE~) =0. The
local Langmuir energy in the cavity is given by

wp( t) =
I H I' exp [ —2„dt' I p( t') ].

For an isolated cavity the terms involving the re-
mainder field E~ are observed to be not significant.

For a given simulation of Eqs. (1) and (2), Eq. (5)
and then Eq. (7) with the Ett terms omitted are solved
numerically, yielding the function wp(t). Alternative-
ly, wp(t) can be obtained by projecting @p on the nu-
merically determined E(x, t) obtained directly from
Eqs. (1) and (2) via the formula wp(t) = lfdx@(xt)
x E(xt) I . Quantitative agreement is found between
these two expressions in the source case. Qualitative
agreement is found in the beam case in the sense that
both expressions for wp peak at the time when the lo-
cal mode becomes stable; i.e. , I p changes sign from
negative to positive.

In the case with a finite driving source S, Eq. (7)
shows that the amplitude H for a given cavity excita-
tion behaves as a source-driven oscillator; if A.p(t)
were independent of t the largest response occurs
when the cavity eigenfrequency is at resonance with
the source frequency which is A. p

—0 fot' the cases con-
sidered here. In a relatively deep well of depth np and
width dp A. p is strongly negative ( IA.pl dp » 1) and far
from resonance; starting with a near zero initial value
0 will have an oscillatory behavior with a maximum
amplitude —IS/A. pl dp/2 which will be too small to per-
turb significantly the cavity density if IS/)apl (dpi'. p)( np Note th.at in dimensional units (denoted by
tilde), dpi. p= (dp/C )A.p is just the product of the
sound transit time across the cavity times the eigenfre-
quency. Such mild oscillatory behavior is widespread
throughout the system and actually accounts for most
of the energy dissipation observed in the simulations
even though there is a relatively small dissipation in
each cavity and such cavities do not "burn out. " A
more dramatic but far less frequent behavior occurs if

I E I

2 can grow to a large magnitude before the density
has evolved much, i.e., in times t & do appropriate for
supersonic behavior. For example, when Idph. pl & 1

and IS/A. pl (A.pdp) » np then a supersonic-driven
collapse will follow. If Idp&pl ( 1, then collapse re-
quires S2d02 )) 7lo. In all cases the cavities initially

respond reactively where the source can add or take
away energy depending on its phase; in the case evolv-
ing to supersonic-driven collapse, the later stage is
dominated by dissipation through Langmuir Landau
damping. This is demonstrated by comparing in Fig. 4
the integration of (7) (with the Ez terms omitted)
with a similar equation with no Landau damping and
finding that the position of the peak in H ( t) as a func-
tion of t is almost unchanged; however, since by this
time np and hence lh. p have increased so that the
oscillation amplitude S/A. p I

dpt 2 has substantially
decreased, the subsequent rapid decrease in H is main-
ly due to Landau damping. Since dp starts near the
dissipation length scale, it cannot contract very much
during collapse before the caviton energy wp(t) begins
to quickly decrease by Landau dissipation. As a result,
the evolution of IEI2 closely resembles that of wp(t)
contrary to the theory of self-similar collapse'2 in
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FIG. 4. Typical collapse for source 5 = 156. Solid curve,

wp( t)/ wp(0); dashed curve, w&&( t)/wp(0) as determined by
Eq. (7) with E& terms removed and A=A. O, dotted curve,
IE(t) I /IE(0) I at peak of local mode.
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which wo is assumed constant while iEi is exploding.
The overall scenario for the beam-driven case is simi-
lar to the source drive but differs in detail: In the
beam case the local cavity fields can be unstable9 be-
cause I o ( 0 in the exponential factor of Eq. (6).'p

The large but infrequent burn-out events are
responsible for sustaining the high level of density
fluctuations. For T, » T, burn out produces deep
density wells or rarefaction pulses preceded by a
compressional pulse of nearly equal amplitude (see
Fig. I); the relatively shallow wells which are efficient
nucleation centers are mainly produced by the interfer-
ence of rarefaction pulses with compressional pulses.

For T, = T; with strong ion wave damping, the den-
sity wells decay quickly; but since nucleation in small
wells is favored, the local nucleation process is still ob-
served to be dominant. In this regime nucleation
occurs directly in the burnt-out density wells before
interference effects can operate. The nucleation is at
relatively larger scales compared to the dissipation
scales than in the T, )& T; case since the decaying
wells spread out quickly, but again we do not observe
any power-law inertial range. In general, the asymp-
totic state for a given drive can be reached without
ever involving a global modulational instability by
starting with an initial level of density fluctuations suf-
ficient to suppress the modulational instability but with
the correct range of amplitudes and spatial scales to
favor the nucleation process.

For drives much weaker than considered above a
variety of other scenarios may be possible including
one in which the turbulence may be sustained by inter-
mittent, long-wavelength modulational instability.

It is believed that only for spatial dimension «2
may cavitons collapse to a singularity in a finite time if
dissipation is neglected. Preliminary results on a
modified set of "Zakharov" equations which exhibit
this property in one spatial dimension indicate that the
nucleation mechanism is unchanged. " Again the
small length scales associated with nucleation preclude
self-similar evolution. In higher dimensions the linear
propagation of ion acoustic waves has a different
geometry and both the nucleation and collapse of cavi-
tons are intrinsically anisotropic. The fact that shallow
density wells are most effective for nucleation should
carry over to higher dimensions and this indicates that
this mechanism might continue to be dominant pro-
vided that a supersonic collapse condition is satisified.
Particle-in-cell simulations corresponding to the one-
dimensional system with the clamped drive have been
carried out and exhibit qualitative agreement with the
Zakharov model in the case of weak drive (Eo ( I)
when the hot electrons accelerated by the cavitons are
cooled at the boundaries. ' In other one-dimensional
particle-in-cell simulations' driven by a long-wave-
length transverse wave we have seen Langmuir cavi-
tons nucleated in the density ripples induced by stimu-

lated Brillouin scattering. We expect that this nu-
cleation process is quite ubiquitous in plasma physics
since there are many sources of density fluctuations
(e.g. , beam-plasma instabilities) which can provide nu-
cleation centers for Langmuir cavitons when the
necessary long-wavelength sources of free energy are
present with frequencies near the mean plasma fre-
quency.
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