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Commensurability and Defect-Induced Phason Gaps in Incommensurate Systems
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The phason energy gap has been observed to increase on going from the incommensurate to
higher-order commensurate phases in the "devil's staircase" compound [N(CH3)4]2ZnCI4. The
gap was determined via the phason-induced N spin-lattice relaxation contribution, which was ob-
tained from the variation of the effective spin-lattice relaxation rate over the inhomogeneous in-
commensurate frequency distribution. Here, as well as in Rb2ZnC14 and Rb2Znar4, the phason gap
in the incommensurate phase is defect induced.

PACS numbers: 72.15.Nj, 76.60.Jx

The theory of incommensurate (I) systems' predicts
the existence of a gapless, acousticlike phason branch
in the I phase in addition to an opticlike amplitudon
branch. The phason represents the sliding of the in-
commensurate modulation wave and corresponds to
the Goldstone mode recovering the broken transla-
tional periodicity of the I phase. Discrete lattice ef-
fects2 in the complete devil's staircase model3 and im-
purities4 may produce a locking of the modulation
wave to the underlying lattice and introduce a gap into
the phason spectrum.

Whereas amplitudons5 have been observed in many
I systems, the available data6 on phasons are rather
scarce and inconclusive as to the existence of a gap 54,
in the phason spectrum:

to =b, +Kk0)@—
4, K

where k=q —qt. In particular, the phason dynamics
of systems exhibiting more than one stair in the devil' s
staircase has not been investigated up to now, to the
best of our knowledge.

Here we wish to report the observation of a phason
gap in [N(CH3)4]ZnC14 in the incommensurate phase.
The gap increases on going from the incommensurate
to higher-order commensurate (C) phases in this crys-
tal where an incomplete devil's staircase, implying a
gapless phason, has been suggested7 a to exist. The
gap has been determined via the phason-induced '4N

NMR spin-lattice relaxation contribution ( Tt4, )
which was obtained from a measurement of the varia-
tion of the effective spin-lattice relaxation rate Tt
over the inhomogeneous incommensurate frequency
distribution. This method is quite generally applicable
and represents a highly sensitive technique for the
determination of the existence of a gap 54, in the
phason spectrum even as small as the nuclear Larmor
frequency coL= 10 —10 Hz.

For direct one-phonon processes (which dominate
the relaxation rate if the order-parameter modes are

overdamped) one finds in the plane-wave modulation
regime a rather large, frequency-independent phas-
on-induced spin-lattice relaxation rate,

T;,'=C " .-"'(I,/~, )"',
2 2

I p && o)L~Ay, (2)

if the phason gap is smaller than the Larmor frequency
Here C is a constant proportional to the square of

the fluctuating electric-field-gradient tensor com-
ponents and I

& is the phason damping constant which
remains finite in the long wavelength limit' (in con-
trast to the acoustic modes) and is comparable with
that of the soft mode at Tc (i.e., I &

= 10"—10' s ').
In the opposite case where the phason gap exceeds

the Larmor frequency, the phason-induced T&@ is
much longer, frequency independent, and directly pro-
portional to the phason gap 5@.
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A4, » t0L, (I 4,A4, ) (3)

An expression analogous to (3) with 6@ replaced by
the commensurability-induced phason gap Ac deter-
mines the spin-lattice relaxation rate (Tt )c in the
higher-order C phases. A measurement of Tt4,

' and
( Tt ' )c thus enables one to express with the help of
Eq. (3) the phason gap in the I phase in terms of the
commensurability gap 5c.

(+p )t )) CoL ~ (4)
1 C qh C

For a higher-order C phase with a unit cell p = ,'n-
larger than that of the high-temperature phase the
commensurability gap is predictedto to be of the form

g 2 ~2( & n)2gn —2
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where IC( —, n) turns out to be of order of a phonon
frequency and IA (

~ 1 is the normalized amplitude of
the modulation wave. Ac goes to zero as n ~ (i.e.,
as the truly Iphase is approached).

The amplitudon-induced spin-lattice relaxation rate
Tiz' is obtained as

where hz = [2a ( TI —T) ]' z in the mean-field approxi-
mation and represents the temperature-dependent en-
ergy gap in the amplitudon spectrum. b, z is of order
of a phonon frequency at temperatures different from
the paraelectric-incommensurate transition tempera-
ture TI. Since I ~=I q=I and coL&& I'~Aq, one
finds

and

Ti~ (coLI ) 'i' « 1, Ag «( cuL

amplitudon contributions. Five "commensurate"
lines are found in the first C phases between
Tci=7'C and Tc2=3.5'C where the unit cell is five
times larger (c = Scp) than in the paraelectric phase.
In the second C phase below T~2 where c = 3co there
are as expected only three C lines.

The temperature dependence of the positions of the
two edge singularities in the I phase (Fig. 1) and the
variation of the effective T& over the incommensurate
frequency distribution (Fig. 2) cannot be described
quantitatively within the usually used "local" model. 9

In this model the incommensurate shift of the reso-
nance frequency of a given nucleus is assumed to
depend only on the incommensurate displacement of
that nucleus so that the effect of other nuclei is
neglected. Similarly, the local model9 neglects the fact
that the real incommensurate displacement is a super-
position of two components" out of phase by m/2. In
the general case, we find'2 the spatial modulation of
the resonance frequency in the Iphase to be

v(x) = vp+v& cos[Q(x) + P]+ v2

25—

[N(CH3)/]2 ZnC[~
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v (" N) =19 520MHz

so that a measurement of Ti~ and Tiq in the I phase
allows for a determination of the phason gap b, @ in
terms of the amplitudon frequency Az which can be
easily determined.

The temperature dependence of the quadrupole-
perturbed ' N nuclear magnetic resonance frequency
for one of the two chemically nonequivalent nitrogen
sites in [N(CH3)4]2znC14 is shown in Fig. 1. The
sharp paraelectric line is replaced by an incommensu-
rate frequency distribution limited by two edge singu-
larities immediately below TI =23'C, as predicted for
a static plane-wave type modulation along one axis.
The fact that T&

' varies over the inhomogeneous in-
commensurate frequency distribution as strongly as
shown in Fig. 2 indicates9 the presence of phason and

+vzcos'y(x)+

whereas / =0 and v2= 0 in the "local" model. 9 Here
Q(x) is a renormalized phase of the modulation wave,
vo = const, v I ~ 3, whereas v2 as well as v2 are propor-
tional to 3 .

For the case shown in Figs. 1 and 2, vt =0 by sym-
metry and, in the plane-wave and constant-amplitude
approximations, 9 the frequency distribution f(v )
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FIG. 1. Temperature dependence of one of the ' N NMR

frequencies in [N(CH3)4]2znC14. The splitting between the
two edge singularities in the I phase varies approximately as
b, v~2 ~ (Ti —T) ~ where 2P=0.88+0.1. The commen-
surate lines in the "soliton" region T ~ Tci are not shown.
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FIG. 2. Variation of the effective ' N spin-lattice relaxa-
tion rate over the inhomogeneous incommensurate frequen-
cy distribution f(v). The upper curve represents the line
shape and the lower curve the relaxation rate.
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FIG. 3. Temperature dependence of the ' N spin-lattice

relaxation time. In the I phase, only the phason contribu-
tion T~~ is shown. The increase in T~@ in the low-
temperature part of the I phase close to T~~ indicates the
transition from the plane wave to the multisoliton lattice
modulation regime.

C phase and again by an additional factor of 4 on going
into the 3co C phase, (6&)1:b,5,,.'53,,=1:2:8. As —,

'

at the 5co 3co transition the observed
ratio 55,gb, 3 0 g is compatible with the predictions
of Eq. (5). In R12ZnC14 one similarly finds from the
T& data (5~)1.'53, = I:7, whereas in Rb2ZnBr4 the T&

data9 suggest (A~)1'.E3,,= 1:8.
The presence of a gap in the I phase is as well

demonstrated by the Larmor-frequency independence
of Tq&. From Eqs. (I) and (7) or Eq. (3) and the
values of K, I, and C one can also estimate the actual
magnitude of the gap in the I phase. The values one
finds for the above systems are of the order of
(b,@)1=10"—10'2 s

Since a gap of this magnitude exists already in the
plane-wave modulation regime where discrete lattice
effects are unimportant, we believe that (5&)I is in-
duced by random frozen defects. '3 '4 This conclusion
is also supported by the near temperature indepen-
dence of b, in the incommensurate phase.

f (v) =const/(1 —Z )'~, (10)

where Z = (v —vo —v2 ——', v2)/( —,
' v2). The variation

of the effective Tl over f(v) is

where K is a constant equaling 1 in the local model. In
deriving Eq. (11) we assumed that the electric-field-
gradient fluctuations are spatially modulated in phase
with the resonance frequencies. Expressions (10) and
(11)well describe the data from Figs. 1 and 2. Expres-
sion (11), in particular, allows for a determination of
Ttq' and Tg, ' from the measured frequency variation
of T~. The fit between the experimental and theoreti-
cal curves at T= 14'C shown in Fig. 2 yields
K= —0.18, T&„'=0.26 s ' and T~&' =0.47 s '. An
order-of-magnitude estimate6 with v2=0.4&&106 m2

s 2 yields T~&= 2.6(h&/I') s according to Eq. (3) and
T~& = 2.6(cuL/I )'~ = 10 s according to Eq. (2).
The above data thus show that the observed phason-
induced T~~ is much longer than expected for a gap-
less phason so that we are forced to conclude that a
gap exists and Eq. (3) is applicable.

The temperature dependence (Fig. 3) of the '4N T&

in [N(CH3)4]2ZnC14 and of Tq& in the I phase thus re-
flect for T( TI the temperature variation of the
phason gap and demonstrate that the phason gap in-
creases by a factor of 2 on going from the I to the Sco
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