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Completely Quantal Treatment of the van der Waals Forces between Atoms:
Application to Positronium
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The attractive interaction between atoms is described as a self-energy in which the effects of
recoi1 and finite relative velocity are treated exactly. For systems involving positronium significant
deviations from the van der Waals potential are found due to both recoil and relative motion.
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The long-range attractive interaction between two
atoms, or the van der Waals force, has its origin in the
mutual polarization of the two particles. For species
without permanent dipole moments the force is entire-
ly quantum mechanical in origin and was first treated
by London in what is now a classical application of
second-order perturbation theory. ' London's calcula-
tion expresses the interaction as due to the exchange
of virtual quanta between the two atoms while under-
going virtual excitations to excited states, and the po-
tential is determined as a power series in the inverse
distance R between the atoms, the lowest-order term
being 1/R6. The nuclei of the atoms are taken to be
infinitely massive and are treated classically thereby.

When a virtual quantum is exchanged the atom
must recoil in order to conserve momentum, but even
for the lightest atoms such as hydrogen or helium the
effect is negligibly small and is usually completely ig-
nored. However, recent advances in the development
of high-intensity thermal-energy positronium sources
have led us to investigate the interaction of positroni-
um with an atom, or with another positronium atom,
situations in which recoil must be accounted for.
Motivation for this work comes partially from the
analogous problem of the interaction of an electron
with a solid surface. There, the effect of recoil is to
modify strongly the classical 1/z self-energy and to
cause it to saturate to a constant near the surface,
and this saturation has been recently verified experi-
mentally. 5 Similarly, a study of the interaction of
thermal-energy positronium with a surface has shown
that the effects of recoil modify the interaction in a re-
gion extending several atomic units from the surface,
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where e& and cog are the unperturbed atomic energies
measured from the ground state and atomic units are
used throughout. If v and p are the vectors to the
respective atomic nuclear cores the perturbating poten-
tial is then

and very near the surface the 1/z3 van der Waals po-
tential saturates to the weaker 1/z dependence. 6

In this Letter, we consider the interaction between
two atoms in a self-consistent many-body formalism
which includes full three-dimensional recoil. The in-
teraction potential is expressed as a self-energy and the
formalism can be extended to all orders of perturba-
tion theory. We find that for the interaction between
positronium atoms significant deviations from the van
der Waals 1/R6 form extend out to separations of 10
a.u. and for small R the self-energy saturates to a 1/R
form. Further deviations are due to finite relative
velocity of the two atoms and for positronium these
can be substantial for energies even as small as a few
electron volts.

As a starting point for the calculations let us consid-
er the interaction between two hydrogenlike atoms;
the generalization to more complicated systems will
become apparent shortly. We take as the unperturbed
system two isolated atoms for which the corresponding
eigenstate is the product of two atomic functions and
two momentum functions
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with corresponding unperturbed energy
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The first contribution to the energy shift comes from second-order perturbation theory:

~E = X, I (j III'll) I't(&; —E, ). (4)
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This energy shift is expressed in terms of the spatial integral over an interaction self-energy,

AE = ))O'R & 0
I R) X (R) & R I 0), (5)

where &RIO) is the translational eigenstate of the two-atom system in the center-of-mass reference frame. The
self-energy X(R) can be systematically generalized to all orders in perturbation theory, and in the present case
this leads to
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After evaluation of the matrix elements &j IH'lo) by expansion to first order in the atomic operators r, and rz the
result is
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If the atomic mass mt and mz are large the recoil terms in the energy denominator of (7) are negligible and the
self-energy reduces to the familiar London expression'
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where a = 2M (ef + rug ) and M is the reduced mass,
M= (I&+1)(m2+ I)/(mt+m2+2). It is readily
seen that X(R) goes to the London expression (8) as
aR oo (the large atomic mass limit). An interesting
case which illustrates that recoil indeed causes a sat-
uration of the self-energy is the limit as aR 0 where
we obtain

—a exp( —aR) —2M&f Iz~ lo) &glzzlo) Ofg exp( —aR), (9)

In the case in which there is a nonzero relative ve-
locity between the two atomic systems Eq. (7) is again
readily evaluated in terms of complete and incomplete
sine integrals. In the asymptotic region these velocity
corrections can be expressed as a correction to the
London form as a power series in 1/R . Thus the
velocity correction is of the same order in 1/R as the
next term coming from the multipole expansion of the
potential of Eq. (3). When there is a finite relative
velocity the self-energy has an imaginary part and this
is further divided into conservative and nonconserva-
tive contributions. The nonconservative imaginary
part has a finite value only if there is sufficient kinetic
energy to cause a real atomic excitation in one or both
of the systems, i.e. , it is the imaginary self-energy due
to inelastic exchanges.

A complete discussion of the velocity effects is
beyond the scope of this Letter but a simple illustra-
tion which generates an order-of-magnitude estimation
of their range is to consider Eq. (7) for two hydrogenic
atoms and approximate the atomic excitation energies
ef and ~g by the ionization energies ~o and ~o. The

Z(R) ——(2/R4) M &Olz,' IO) &Ol.,' IO) .
aR~0

(10)

The effect of recoil of the atoms as they exchange vir-
tual quanta is to weaken or saturate the attractive po-
tential to a 1/R4 form. This reduction by two powers
of the separation distance is the same as that noted in
the atom-surface interaction. The range of recoil ef-
fects in the self-energy is given by the parameter a
and clearly for atoms even as light as hydrogen this
distance is negligibly small. However, for positronium
the order of magnitude of a can be estimated most
readily by replacing the atomic excitation energies ef
and ~~ by the ionization energy, which gives a ——2
a.u. Thus it appears that the recoil effects can be ap-
parent at measurable separation distances.

(We have also made the tacit assumption that the atomic energies are independent of azimuthal quantum
number. ) However, if the atomic masses are small the recoil terms can have a substantial effect for low values of
R. This is most readily seen by examining Eq. (7) for the case in which the relative velocity between the two
atoms is zero. The self-energy can be obtained in closed form and is
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the self-energy in the asymptotic region reduces to
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where the term 22.5/R comes from the higher-order
multipoles. The factor M shows clearly that the
velocity correction is negligible for ordinary atoms, but
for two positronium atoms the ratio of the two 1/R
corrections is approximately E, /2 where E, is the rela-
tive kinetic energy measured in atomic units. Thus
the velocity correction can be significant over a range
of R of 5 to 10 a.u. , and for moderately elevated ener-
gies can cancel the other 1/R correction.

We would like to stress the importance of retaining
full three-dimensional recoil in these calculations. It is
considerably simpler to include recoil only in the direc-
tion transverse to the axis joining the two atoms, i.e.,
to retain only two-dimensional recoil. If this is done
one erroneously obtains recoil corrections to the Lon-
don result which can be expanded as a power series in
1/R in the asymptotic region. However, the correct
three-dimensional treatment gives the much faster ex-
ponential decay of recoil effects as illustrated in the
case of Eq. (9).

Since recoil is most important for atomic systems of
small mass it is logical to search for effects in systems
involving positronium. Recent advances in the de-
velopment of thermal-energy positronium sources
suggest that experiments to measure these effects are
possible in the near future. Shown in Fig. 1 is the in-
teraction self-energy of two positronium atoms
separated by a fixed distance R, and normalized to the
London expression for the 1/R6 van der Waals poten-
tial. The polarization sums over atomic states were
carried out with use of the exact expressions for the
oscillator strengths of a hydrogenlike atom. The sa-
turation to a 1/R potential occurs at distances of the
order of one atomic unit or less where the approxima-
tions used to obtain these results are no longer good.
However, the effects are still significant even at dis-

tances as great as 6 to 10 a.u. and this indicates that
recoil can make a measurable difference in the interac-
tion energies of such systems.

Recoil can also affect the interaction between posi-
tronium and a normal atom, although in this situation
the reduced mass M is twice as large as in the above
case and consequently the exponential decay constant
a is larger. However, in spite of the fact that recoil ef-
fects will occur at smaller separations it should be not-
ed that most light atoms are substantially more com-
pact than positronium and hence the approximations
remain valid for smaller approach distances. Shown in
Fig. 2 is the self-energy for positronium interacting
with several atomic systems. For all of these systems
the sums over atomic states were carried out by utiliza-
tion of the Pade approximants for the atomic polariza-
bilities. ' Since the Pade approximants to the polariza-
bilities are known for a number of systems we have
carried out additional calculations for the noble gases
as well as many others, including diatomic molecules
such as N2, 02, and H2. For all of these systems the
ratio of X(R) to the London potential lies between the
curves for hydrogen and for neon shown in Fig. 2. It
is evident that recoil can significantly lower the in-
teraction energy out to separations of 5 a.u.

In this Letter we have demonstrated that the many-
body interaction energy between two atomic systems
can be represented by an effective self-energy and that
this self-energy includes very naturally the effects of
recoil upon exchange of virtual quanta and also in-
cludes the effects due to finite relative velocity.
Although recoil is totally unimportant for ordinary
atoms we see that it can contribute to a significant
weakening of the van der Waals potential in a system
involving positronium. A finite relative velocity also
weakens the interaction to a noticeable degree even for
positronium kinetic energies of less than a few elec-
tron volts.
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FIG. 1. The ratio of the interaction self-energy X(R) to
the London potential XL for two positronium atoms as a
function of distance R between the atomic centers.
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FIG. 2. The ratio of the interaction self-energy X(R) to
the London potential XL for positronium a distance R from
several different atomic or molecular species.
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