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Isovector low-lying collective 2% states are studied in the samarium isotopes in terms of the
interacting-boson model. On the basis of E 2 transition data, it is pointed out that the 25 states of
148, 1509 are isovector. The first calculation including different proton and neutron boson charges
is reported for the E2 transitions Of — 2i, 25, and 2; of ¥!%Sm, giving rise to the first
comprehensive agreement with experiment. Some predictions of B (M 1) values are presented for

further confirmation of the isovector properties.

PACS numbers: 21.10.Re, 21.60.Ev, 21.60.Fw, 25.30.Dh

The recent discovery of the J™=1% magnetic col-
lective state in %®Gd demonstrates that isovector col-
lective states can be quite low in energy.! The in-
teracting boson model version 2 (IBM-2) treats ex-
plicitly the proton and neutron degrees of freedom??
and is capable of describing this state which is isovec-
tor in the proton and neutron quadrupole degrees of
freedom.*> However, this state may not be the only
low-lying isovector state. In this paper, we use IBM-2
to search for isovector states and properties, taking the
samarium isotopes as an example.

The IBM-2 states are constructed from proton
J™=0%(s,) and 2*(d,) bosons, and neutron
J™=0%(s,) and 2% (d,) bosons.>? The IBM-2 Ham-
iltonian?® is taken to be

H=e4n;—x0Q,0,+M, (1)

where €, is the single d boson energy with respect to
the s boson energy, n; stands for the operator which
counts the total number of 4 bosons, k denotes a cou-
pling constant, and Q, and Q, are defined as

Q,=P.+X,1d]d,1?,
i | @

PT=s:dT+d:s,, T=T,V
with X, being a coefficient.> The third term on the
right-hand side of Eq. (1) is the Majorana interaction?;
M=3; 16 1d}d] 1P1d,d, 1P

The IBM-2 eigenstates are obtained by diagonalizing
the Hamiltonian in Eq. (1) for a set of N, proton bo-
sons and N, neutron bosons, which are equal to half of
the number of valence protons and neutrons, respec-
tively.¥® N, is 6 for the Sm isotopes, since there are
twelve protons outside the Z =50 magic core. In the
following, we consider *8Sm~-154Sm, which correspond
to N,=2-5, taking the N =82 magic core. As in the
standard IBM-2 phenomenological fit,” values of
parameters €4, k, X,, and X, are searched so that cal-
culated excitation energies reproduce experimental en-
ergies. The search was carried out for each isotope
separately, although no drastic variation is expected as
a function of N,. Because of the large number of
valence nucleons, we assume that any effect of the

Z = 64 subshell gap will either be wiped out or ab-
sorbed in the phenomenological parameters.

The &, term in the Majorana interaction’ is set £,=0
is this paper, which is one possible phenomenological
choice, and seems to be justified by a microscopic
theory.! The &, and &; are assumed to be equal to
each other’ and are taken to be 0.1, 0.2, 0.4, and 0.6
MeV for N,=2-5. The &, and £&; terms do not have
any notable effects on the J™ =27 states which we are
going to investigate.

For the samarium isotopes the valence protons and
neutrons are filling different shell-model orbits.
Hence the states described in IBM-2 will all have the
same isospin, the isospin of the ground state,
T=T,=+(N—2Z). The term isovector used before-
hand refers to transitions between states with the same
isospin but for which the difference of the proton and
neutron quadrupole matrix elements is much larger
than their sum.” However, within IBM-2, there is an
SU(2) group different from isospin which can classify
the states with the same isospin according to their
symmetry with respect to proton and neutron bosons.
The quantum number is called F spin®!® which can
range in value from Fp,=+(Ny+N,) to Fpin=7
X |N,— N,|. The IBM-2 Hamiltonian in Eq. (1) does
not conserve F spin because the proton-neutron quad-
rupole interaction is assumed to be much stronger
than the neutron-neutron or proton-proton quadrupole
interaction. Nevertheless, the lowest states will be pri-
marily composed of the states with F = F,,,, which
have the most proton-neutron symmetry. For exam-
ple the s boson condensate state

N_ N
|F=Fpax 0)=|s,7s,”) 3)
has maximum F spin. Likewise all the states in which
quadrupole bosons are created in a symmetric manner
also have maximum F spin,?

|F = Frao Do (dfsy+dfs,)|F=Fpneu,0), (4

where / is an integer (0</=<N_+N,) and all other
quantum numbers are omitted for brevity. States in
Eq. (4) are also referred to as totally symmetric states.
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The IBM-1 treats only these totally symmetric states,!! because proton and neutron bosons are not distinguished.?
In the one d boson (d!) configuration, the totally symmetric state is

|F = Frax 1) = (N + N) = V2SNl dysa™ ' sh?) ++/ Nyl dysnmsy ™ ), (5a)

while the lower F-spin state is given by

|F=F o —1,1)= (N, + N,) " V2SN, dysnm'siv) = SNold,shmsh» 1)) (5b)

The IBM-2 Hamiltonian with an attractive (x > 0)
0.0, interaction pushes down the state in Eq. (5a)
while pushing up the state in Eq. (5b). This is the basic
reason why lower F-spin states are found to be at
higher excitation energies.

The IBM-2 E2 transition operator is T=e20,
+e80, where e2 and E? are referred to as proton and
neutron boson charges, and Q, and Q, are defined in
Eq. (2). The IBM-2 calculations performed so far as-
sumed eﬁ =ef for the sake of simplicity. In this pa-
per, however, we searched for proper values of eZ and
ef,’ separately. The E2 transition operator can be writ-
ten as T =¢,Q; +e,0, where Q; is an F-spin scalar
and Q, is an F vector,

Qs =P+ P,+X,,([d]d, 1P +[d]d, 1), (6)
where

e, , =+ (eB +eb),

Xgo=L(eEX, teBX,)/(e5 +e])].

The transition between totally symmetric states is
mainly due to the F-scalar term, while the transition
between a state with F=F_,, and a state with
F=F_,, —1 is due solely to the F-vector term. Thus,
if all low-lying states were totally symmetric as as-
sumed in IBM-1, the F-vector term plays no significant
role. The major purpose of this paper is to point out in
which nuclei and at what energy one can find states
with F < F,, like those in Eq. (5b), and to demon-
strate where and how significantly the F-vector £2
operator contributes to experimental B (E2)’s.

We now return to the samarium isotopes. We deter-
mined the IBM Hamiltonian in Eq. (1) so that the ex-
perimental spectrum is reproduced well. The follow-
ing values of the parameters in Eq. (1) are obtained,
for N,=2, 3, 4, and 5, respectively; «=0.140, 0.090,
0.075, and 0.085 MeV,; ¢;,=1.0, 0.7, 0.5, and 0.38
MeV; x,=—0.8, —0.8, —1.0, and —1.0; X,= —0.8,
—0.5, —0.9, and —0.75. We obtained a good agree-
ment between IBM-2 and experimental low-lying spec-
tra. Both experimental and theoretical energies show
the transition from the vibrational spectrum of *8Sm
to the rotational spectrum of >*Sm.

We shall now study the wave functions of *8Sm.
The d! component of the 2i wave function, which is
the dominant component, is a linear combination of
the states in Egs. (5a) and (5b) with amplitudes 0.815
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and —0.145, respectively. Thus, the d! component pri-
marily consists of the totally symmetric state in Eq.
(5a). Relatively large overlaps with totally symmetric
states are found for higher configurations as well,
making this 2{ state predominantly a totally sym-
metric state. Since the ground (0i") state is also pri-
marily totally symmetric, the E2 transition 0{" — 2{ is
dominated by the F-scalar term in Eq. (6).

The situation is completely reversed in the 25 state.
The d! component, which is dominant, is a linear com-
bination of the states in Egs. (5a) and (5b) with ampli-
tudes 0.076 and 0.814, respectively. The 23 state
out to be primarily the lower F-spin state in Eq. (5b).
The E?2 transition 0f — 2§ is carried mainly by the
F-vector term in Eq. (6).

To test the structure of these wave functions, one
can look at E2 transitions. As already mentioned,
there are two boson charges e and eZ. These are
determined so that the two largest experimental
B(E2) values of three transitions 0 — 27, 25, and
25 are reproduced.

In the case of *8Sm, we took the transitions
0{ — 2 and 27 ,'? obtaining e =0.057 eb and
e =0.128 e b. With use of these values, other transi-
tions'% 13 are reproduced remarkably well as shown in
Fig. 1, which implies that the wave functions and bo-
son charges are reasonably good. Note that
eﬁ /ef ~ 2, which is naturally expected from the shell
model where the proton effective charge is larger by a
factor 2—-3 than the neutron effective charge.

Heavier Sm isotopes are also studied in the same
way. The boson charges are shown in Fig. 2 in terms
of the F-scalar and F-vector charges, ¢, and e,. The
g-boson renormalization increases the F-scalar charge
and decreases the F-vector charge from their shell
model values,!* and most likely will also explain their
mass dependence.

With use of the boson charges in Fig. 2, all transi-
tions in Fig. 1 are nicely reproduced.'>!* The ratio
B(E2:2{ — 4{)/B(E2:0{ — 2{") is the most impor-
tant measure as to what extent the system is vibration-
al or rotational. This ratio is calculated without any ad-
justable parameter, giving rise to an almost perfect
agreement with experiment. The transitions 0;f — 25
and 2§ are also reproduced very well. These transi-
tions are weaker and more sensitive to isovector prop-
erties. In order to see this, the ratio between matrix



VOLUME 54, NUMBER 8

PHYSICAL REVIEW LETTERS

25 FEBRUARY 1985

I I I I
4 -
«
u
- 2
| —
of‘ ~
0.0 =
3
C
~
w
o 0.05 .
0.0
148 150 152 154
A

FIG. 1. Calculated (lines) and experimental (symbols)
B (E?2) values for four transitions of &Sm. The solid lines
are obtained by the present IBM-2 calculation, while the
dashed lines are obtained by an IBM-1 calculation (Ref. 15).

element of Q, over that of Q, is shown as M, /M, in
Fig. 2. The 0{ — 2{t transition follows the totally
symmetric values, particularly in the deformed region.
On the other hand, the ratio is —1 for the transition
from the state in Eq. (3) to the state in Eq. (5b).
Similar values are found in Fig. 2 for transitions
0 — 25 of #81508m and for 0;" — 2; of 132 1%4Sm),
indicating that these 2% states contain a considerable
amount of components with F < F,,.

The transitions from the ground to the other 2%
states are in intermediate situations. As shown in Fig.
2, the ratio M, /M, tends to become positive as defor-
mation evolves, implying more totally symmetric com-
ponents in the wave function. The ratio, however,
never becomes that of totally symmetric states. In-
cluding such complicated cases, all the transitions
0 — 2{", 25, and 2§ are nicely reproduced by the
present IBM-2 calculation, whereas the IBM-1 calcula-
tions attempted so far'>1® have failed by a factor of 2
in the whole region of the Sm isotopes (see Fig. 1).
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FIG. 2. (a) The F-scalar and F-vector boson charges for
4Sm. (b) The  proton-neutron  ratio M,/M,
=(2*1Q,110%)y/¢2*11Q,1l0%). The dash-dotted line indi-
cates the ratio for totally symmetric states. The dashed line
shows the 0{" — 2 transitions in %% %4Sm.

This suggests to us the importance of the explicit treat-
ment of the proton and neutron degrees of freedom as
already implemented in IBM-2.

The M1 transition is also sensitive to F-vector prop-
erties. The M1 operator in IBM-2 is defined as’
T™MY = (3/47) (gL, +g,L,) where L,(,, denotes
the proton (neutron) boson angular-momentum
operator, and g,(,) is the proton (neutron) boson g
factor. We assumed g,=(—0.35, —0.30, —0.25,
—0.20)uy for N,=2-5, respectively, while g, is kept
constant at g, =0.85uy. As a result of the difference
between g, and g, there is a strong F-vector term in
T™1D - Table I shows predictions of gz factors of the
2{" state, B(M1:2f;— 2{) and B(M1:0{ — 1{).
The table also shows experimental gz factors of the 2;
states'> 1® which are reasonably well reproduced. We
point out that a considerably large B (M 1) is obtained
for the transitions 23 — 2 of 48150Sm.  Although
the Weisskopf estimate of B (M1) is 1.8u%, this value
mainly comes from the g; factor which has a small ef-
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TABLE I. Calculated gg factor of the 2i state and three B(M1)’s of *8154Sm. The ex-
perimental g factors are also shown after the slash (Refs. 13 and 16).

gr (un) B(M1) (u?)

A 2f 2F — 2t 2 — 2f 0 — 17
148 0.40/0.27(5) 0.46 0.049 0.61
150 0.38/0.36(4) 0.47 0.003 0.75
152 0.37/0.42(3) 0.06 0.007 1.46
154 0.38/0.39(2) 0.02 0.007 1.80
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fect in quadrupole collective states.® By neglecting the

g, factor and averaging over proton and neutron
values, one obtains the single-particle estimate
~0.1p%. The B(M1:2§ — 2{") values of !451505m
exceed this estimate, implying some collective effects,
whereas in the other cases B(M1:25;— 2{") values
are as small as this single-particle estimate. The large
B (M 1) values are due to the F-vector character of the
25 state of 8 15°Sm_ and should be measured as a test
of our conjecture.

In the pure vibrational limit, the B(M1) from the
ground state vanishes.!® However, the calculated
B(M1:0{ — 1{) in Table I is still sizable in spherical
nuclei like 1*8Sm. The ground-state correlation plays a
crucial role here, whereas it is ignored in the usual
SU(5) estimate. We note also that in the deformed
samarium isotope the calculated B (A1) is comparable
to that measured in °Gd, B(M1)= (1.3 +0.2)u}
(Ref. 1).

We summarize this Letter by mentioning the follow-
ing: (i) There can be isovector J™=2% collective
states below 2 MeV. (ii) The IBM-2 can describe such
states utilizing its F-vector properties. (iii) Even in
spherical nuclei the magnetic dipole transition strength
from the ground state can be collective, ~ 3 that of
deformed nuclei. More studies, particularly experi-
mental, are strongly urged on this intriguing problem.
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