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Deformation of the Nucleon and Delta in Excited States
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A quark model for baryons, in which the valence quarks are moving in a deformable mean field,
is considered. A q-q interaction, consisting of one-gluon-exchange and one-pion-exchange poten-
tials, is diagonalized exactly in the model space of deformed orbitals. With four model parameters,
the masses of both the even- and odd-parity states and the radiative transition amplitudes for the
L = 0 excited states are obtained in fair agreement with experiment.
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Baryon spectroscopy is a very active field of research
with a wealth of available experimental data. ' Rig-
orous nonperturbative QCD is not as yet able to con-
front this problem, and the best that can be done is to
unravel the data by various phenomenological QCD-
inspired quark models. The most successful of such
models is that of Isgur and Karl, 2 3 where the consti-
tuent quarks move nonrelativistically in a harmonic
confinement, and anharmonic residual interactions are
treated in first-order perturbation theory. The hyper-
fine and tensor q-q interactions are taken from one-
gluon exchange, and the spin-orbit part is suppressed.
The model has the merit (over relativistic models) of
eliminating the center-of-mass motion cleanly, and
generating analytical wave functions for the excited
states. Extensive comparison with experimental data
is easily made. Recently, Forsyth and Cutkosky4 have
refined this model and examined the masses and elas-
tic widths of all states up to N =3 oscillator excita-
tions.

Despite the success of the spherical-oscillator model
discussed above, we present in this paper an alterna-
tive model5 6 in which the baryon acquires consider-
able deformation in excited states. What is the neces-
sity of our introducing yet another model when the
simpler scheme of Isgur and Karl is successful? To
answer this, let us examine the role of the central resi-
dual interaction in the spherical-oscillator model. Its
matrix element in the ground state is roughly of the
same magnitude as the oscillator spacing. In first-
order perturbation, the diagonal matrix element of this
interaction brings down in energy the symmetric
L=0, N=2 harmonic excitation close to the odd-
parity N= 1 state. This explains the observation of
N(1440)t+/z around the same energy as the low-lying
odd-parity states. If, however, this interaction is ex-
actly diagonalized in the truncated model space of the
spherical model, the large off-diagonal element
between the ground state and its nodal excitation nulli-
fies this effect. In our view, the prescription of neglect
of the off-diagonal matrix elements of the anharmonic
interaction may be circumvented if the baryon is al-
lowed to deform in the excited states. With the defor-
mation increasing with excitation the excited states are
naturally brought down in energy.

In this Letter, we demonstrate that a realistic q-q in-
teraction, whose parameters are consistent with
theory, may be exactly diagonalized in the model space
of the deformed orbitals to yield energy levels in good
agreement with the experimentally observed states.
Moreover, a sensitive test of whether the excited-state
orbitals are deformed or not is to calculate the transi-
tion amplitudes between the excited and the ground
states. In the spherical-oscillator model, N(1440) &+~2 is
mainly a nodal excited symmetric state with little ad-
mixture of the mixed-symmetry N=2 state. In our
model, its wave function is very different with about
40'/o admixture of the mixed-symmetric component.
The helicity amplitude At/2 for the electromagnetic
transition N(1440) N(940)+y is known experi-
mentally' to about 10'/o accuracy for the proton, and
we find that our model fares better than the spherical
one in this sensitive test. For N(1710)t/2, the predic-
tions of the two models are spectacularly different, and
the experimental data, although rather poor, favor
large mixing.

In our model, the three valence quarks are assumed
to move in a deformable mean field. This deformation
may be the result of quantum many-body effects, like
the polarization of the sea-quark field with excitation
energy, and is not due to the one-gluon-exchange
two-body potential. In the nonstrange sector, the
mean-field Hamiltonian is taken to be6

3

Ho= $ [p('/2m+ 2 m(o) x; +(sly; +(o z; )],
I=1

where p; and r; denote the momentum and position of
the ith quark, and m = m„= md is the constituent
quark mass. After elimination of the center-of-mass
part, the intrinsic energy is given by the motion of two
uncoupled anisotropic oscillators in the intrinsic coor-
dinates p = (r& —r2)/J2 and & = (r&+ r2 —2r3)/W6.
The intrinsic energy is

E= (N„+1)to)„+(Ny+1)fo)y+ (N, +1)to)„
where N„= ( n~ + n„), the number of oscillator
quanta excited in the x direction, etc. An intrinsic
state is specified by the occupied orbitals (N„,N~, N, ),
with N = N„+ N~+ N, . The shape of the potential in
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each intrinsic state is determined by minimization of
the intrinsic energy E, with respect to variations in cu,
~y, and cv„subject to the volume conservation condi-
tion cuxrd&r0 =Q)p. This yields the equilibrium condi-
tion cu„(N„+ 1) = r0~(N~+ 1) = r0, (N, + 1). For the
ground state, N = Ny = N, = 0, and consequently,
Go+ o)y 0) clio Thus, the ground state is spherical,
but the excited states are deformed. It was shown in
Ref. 6 that the states of axially symmetric prolate
shape (N = N, ) come down most in energy. The
equilibrium parameters for this shape are given by
r0„=co~ = (N+ 1)r0, = r0tt(N+ 1) ' . The correspond-
ing intrinsic wave functions of appropriate symmetry
may be readily constructed, and are given in Ref. 6.
The next step is to diagonalize the q-q interaction in

this nonorthogonal basis.
In Ref. 6, the central residual q-q interaction,

although weaker than in the spherical model, was still
treated in first-order perturbation. The main objective
of this paper is to show that a realistic QCD-inspired
q- q interaction may be diagonalized without the
neglect of the off-diagonal elements, and yet repro-
duce the data for both the even- and odd-parity states.
Consider first the one-gluon-exchange potential
(OGEP). The running coupling constant in QCD is

a, (q ) =12m./[(33 —2Nf)ln( —q /A2)],

where Nf is the number of flavors and A the scale
parameter. At —q2=1 GeV2, and for Nf=3, we get
a, in the range of 0.3 to 0.4 for A between 0.1 and 0.2
GeV. The static part of the OGEP is taken to be

(2)

2 o's 2m o's 4' o.,
I'oGEp(r) = + 6 (r) + a-, o-,5 (r). (I)

rrt 9m

To be consistent with the QCD estimate, we choose n, = 0.35 in Eq. (1). Such a small value of n, yields some-
what less than half the observed N-6 ground-state splitting. One alternative way out of this dilemma is to take n,
close to unity. We found, however, that a better simultaneous fit to the N-A and particularly odd-parity spectra is
obtained if a spin-isospin —dependent q-q force is postulated. Such a potential may arise if the pion field is regarded
as elementary, from considerations of chiral symmetry, interacting with the valence quarks. With the introduc-
tion of the pion, the tensor force and the spin-orbit force in particular coming from OGE are suppressed by a factor
of 3 with further suppression coming from deformation. A detailed account of how this leads to a solution of the
long-standing spin-orbit puzzle will be published shortly. In this paper, we do not treat the pions dynamically, but
assume simply a one-pion-exchange potential (OPEP) between the quarks. With a pseudoscalar coupling the cen-
tral part of the potential is

VopEp (r ) = 477 5 ( t') m~
4m 12m2
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FIG. l. Even-parity X = 2 nucleon and delta spectra. The permutation symmetry (SYM or MS) refers only to the main

component in the wave function. The nominal masses (and the spreads) of well-defined states are shown by filled circles
(solid lines), while the masses of weak states are shown by open circles. The uncertainty in the mass spread of weak states,
where it is known, is shown by dashed lines.
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FIG. 2. Odd-parity N = 1 (MS) and N = 3 (SYM) nucleon and delta spectra. The notation is the same as in Fig. 1. In addi-
tion, the state denoted by the open square corresponds to the phase-shift analysis used in Ref. 4.

In the q 0 limit, goo
= —', (m/m~)g~iv~, where g~~~

is the pion-nucleon coupling constant and m& is the
nucleon mass. From the above relation, taking
gi22~ /4m =14.6, m =330 MeV, one gets gqo /4m
=0.65. In Eq. (2), the zero-range term contributes
dominantly, and should get suppressed for nonzero
—q because of vertex modification by the pion form
factor. For simplicity of calculation of the matrix ele-
ments, however, we retain the form (2), but allow for
a reduced value of g~2q„ to account for the suppression.
With n, =0.35, the N-b, splitting is reproduced if
gqq /4m is taken to be Q. 35.

The intrinsic Hamiltonian, Ho, plus the interactions
(1) and (2) are diagonalized in the nonorthogonal in-
trinsic basis, and the energies of good angular momen-
ta are projected out, as described in Ref. 6. The
results of this calculation are displayed in Figs. 1 and 2.
The parameters chosen for this calculation are given
by m = 330 MeV, tcuo= 550 MeV, o., = 0.35, and

g~~ /4~=0. 35. In addition, there is an overall con-
stant (present in every constituent-quark model),
which is taken to be —1259 MeV to set the mass of
N(940). Note that the number of parameters we need
is the same as in the spherical model, but we are also
able to explain the observed odd-parity states in the N
and b, around 2000 MeV. Forsyth and Cutkosky" have
stressed that an additional parameter is needed in the
spherical model to obtain these N = 3 excitations. 9

Finally, to compute the helicity amplitudes for radia-
tive transitions, wave functions of good angular
momentum were projected out from the deformed in-
trinsic states. This could be done analytically in our
model. The N = 2 states in our model are considerably

deformed, with tu„=tu~=3tu, = (3)' ouo. When ex-
pressed in terms of spherical orbitals of oscillator
parameter duo, they contain about 15% admixtures of
N = 4 and a couple of percent of N = 6 shells. As em-
phasized earlier, we find that the projected wave func-
tion of N (1440) ~~2 has about 40'/o admixture of
the mixed-symmetry component, and similarly
N(1710)t+j2 is about 40olo symmetric. The computed
helicity amplitudes from these states are shown in
Table I, where the experimental values, as well as the
results of the Isgur-Karl model, are shown. 'o The
computed helicity amplitudes depend sensitively on
the structure of the wave functions of the excited
states. With deformed orbitals, the interference of
various terms enhances the transition amplitudes 3 ~~2

from N(1440)&~2 to the ground state, and they cancel
for N(1710)~~2 to yield a near-zero value. For the
ground-state N and 5, our wave functions are very
similar to the Isgur-Karl model, and the transition am-
plitudes for b, N+y are almost the same. In all
three cases, our model calculation yields only about
60% of the experimental value for the amplitudes —for
the spherical quark model the situation is worse. In
the same context, note that the radius of the nucleon
ground state is only about Q. 6 fm in our model, and
this underestimation of the radius is also a common
feature of the constituent-quark models. A dynamic
treatement of the pion cloud rectifies this shortcom-
ing, and should improve the results of the computed
helicity amplitudes.
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TABLE I. The measured yNdecay amplitudes (in units 10 3 GeV ' 2) and the results
in our model. For comparison we also show, in the last column, the results obtained by
the Isgur-Karl model (Ref. 10).

Resonance Helicity Experiment Our model I-K model

N (1440)Pi i

Ã(1710)P)t

P

P3 )g2

—69 +7
37+19
—5 +16
—5+23

—38
24

—24
16

—47
—21

Research Council of Canada.

tC. G. Wohl et al. (Particle Data Group), Rev. Mod. Phys.
56, SI (1984).

2N. Isgur and G. Karl, Phys. Rev. D 18, 4187 (1978), and
19, 2653 (1979).

3N. Isgur, in The Nevv Aspects of Subnuclear Physics, edited
by A. Zichichi (Plenum, New York, 1980), p. 107.

4C.P. Forsyth and R. E. Cutkosky, Z. Phys. C 18, 219
(1983)

5R. K. Bhaduri, B. K. Jennings, and J. C. Waddington,
Phys. Rev. D 29, 2051 (1984).

6M. V. N. Murthy, M. Dey, J. Dey, and R. K. Bhaduri,

Phys. Rev. D 30, 152 (1984).
V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, in

Relativistic Quantum Theory (Pergamon, Oxford, 1979), Part
1, p. 284.

SY. Nogami and N. Ohtsuka, Phys. Rev. D 26, 261
(1982); J. Navarro and V. Vento, Phys. Lett. 140B, 6
(1984); V. Vento and J. Navarro, Phys. Lett. 1418, 28
(1984).

91n an alternative approach, P. J. Corvi [Phys. Lett. 1018,
349 (1981)1 obtained the N=3, D35 level within the general
framework of the Isgur-Karl model but used slightly dif-
ferent force parameters for the N = 3 orbitals [see also K. C.
Bowler, P. J. Corvi, A. J. G. Hey, and P. D. Jarvis, Phys.
Rev. Lett. 45, 97 (1980)).

toN. Isgur and R. Koniuk, Phys. Rev. D 21, 1868 (1980).

748


