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Mass and Anomalous Magnetic Moment of an Electron
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The configuration of the electromagnetic field between two conducting plates in the presence of a
point source is studied. It is shown that the discretization of the field modes effectively decreases
the radiative mass of the source as well as its anomalous magnetic moment. Both effects are finite,
cutoff independent, and separable from continuum results and can be measured by precision exper-
iments.

PACS numbers: 12.20.Ds, 14.60.Cd

In this paper it will be shown that the geometry of
the measurement apparatus affects the mass and
anomalous magnetic moment of an electron. These
corrections are almost within the range of present ac-
curacy and can be detected by precision experiments.

When two conducting plates are arranged parallel to
each other the boundary condition imposed by them
changes the electromagnetic field configuration in two
ways' 4: It discretizes the field modes in the direction
normal to the plates and imposes a lower limit on the
wavelength, which cannot exceed twice the distance
between the plates. Thus certain radiative corrections
containing internal photon fields, in particular the
electron self-energy and the electron anomalous mag-
netic moment, will be affected. s 6

In what follows the photon propagator between the
plates is derived for use in covariant perturbation
theory. A simple rule for calculation of the modified
matrix elements is found. Then the results are applied
to the calculation of the electron self-energy and its
anomalous magnetic moment between two conducting
plates. The plates do not impose boundary conditions
on the electron field, which is unaffected. For the
evaluation of radiative corrections the position of the
electron, as well as its state, is of no significance.

For a derivation of the photon propagator I shall use
the method of images. " If the plates are assumed to be
normal to the xt axis and positioned at xt =0 and
xt = a (see Fig. I), the photon propagator G~(x —x')
can be written as

Gz(xt —xt ) = X [G(x& —x& —2an) —G(x&+x&' —2an)].

A„(x, =O) =A„(x,=a) =O, (2)

Here, only the xt arguments have been explicitly
given, since all other directions are not affected. G
stands for the usual photon propagator in unbounded
space-time and Gz is a sequence of multiple reflec-
tions between mirrors placed at xt = 0 and a. This is
equivalent to the imposition of Dirichlet boundary
conditions,

on the vector potential. Generally it is impossible to
utilize the exact form of the boundary condition, if we
take into account all microscopic constituencies of the
plate or set the normal component of the magnetic
field and the tangential component of the electric field
to zero. However, as has been pointed out previous-
ly4 6 8 the electromagnetic field between parallel con-
ducting plates is approximated well by (2). The
Fourier transformation of Gis(x —x') is given by

exp[ik(x —x') + ik„xt ]sin(k„xt )
G~(x —x') = 2i

(2m ) ko —k„—k2 —k3 —i e

where k„=nm/a. The form of (3) implies that energy-momentum conservation is only approximate in the xt
direction and, for outgoing k and q and for incoming p, leads to

sin[(p, —k„—qt) a/2] = 5, (pt —k„—qt) 5(pt —k„—qt).
~(p& ka qt) a

This is due to the fact that energy and momentum can be transferred to the plates which have been assumed rigid.
In what follows it is assumed that these transfer processes are negligible and an exact energy-momentum conserva-
tion holds. Hence, the only effect of boundary conditions will be that in momentum space the continuous integra-
tion in the xt direction is changed to a summation over a discrete momentum spectrum such that the following
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FIG. 2. Lowest-order electron self-energy diagram.

We turn now to the calculation of the electron self-
energy and its anomalous magnetic moment. The
separation of the finite change of radiative corrections
can be done as follows: If m(a) is the renormalized
mass dependent on the separation of the conducting
plates and X(a) is the self-energy contribution, then

m(a) = m(~) +5m+ X(~) + X(a) —X(~)FIG. l. An electron at x~' between two conducting plates
normal to the x~ axes at x~ = 0 and x~ = a. = m(~)+0+Am(a).

substitution can be performed:

7r
dki ~—

~ n= —OO

nw0

ki k„=nn/a'

As a consequence of this subtraction procedure
Am (a) is finite and well defined.

For explicit calculations it is assumed that the
momentum of the electron in the xi direction is small
compared to its rest mass, pi « m By application of
substitution (5) for the ki integration and evaluation
of all other integrals by assumption of cylindrical co-
ordinates, the mass shift b, m(a) defined in (6) is ob-
tained from the calculation of the first-order self-
energy diagram (see Fig. 2):

b, m(a) = —
J dn F(n) —X F(n),

a n=1

m+ [(7m/a)'+ m']'~'
F n=ln n/a. [(7m/a) + m ] —am/a+

With application of the Euler-MacLaurin formula and the assumption that m ))m/a, the leading term is found to
e

5 m (a ) = —(n/2a) ln( ma ) .

For the calculation of the electron anomalous magnetic moment b, g or g —2 similar considerations apply. The
lowest-order contribution to the anomalous magnetic moment of an electron between conducting plates can be
computed by evaluation of the diagram shown in Fig. 3. The change 5g(a) =b,g(a) —Ag(~) due to boundary
conditions is given by

2n OO

Sg (a) = —
„~ dn IC ( n) —X K (n),

a n=1

1
1

m+ [(n n/a)2+ m2]i~2
IC n = —In

m n n/a
2[1+ (mn/am) ] 2m. n

[(7m/a) + m ]' am

Again, Sg(a) can be evaluated and assumes a simple form for m ))~/a.

5g (a) = —(n/ma) ln( ma ) . (10)

Both corrections to the electron mass and its anomalous magnetic moment are cutoff independent. Finally it
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FIG. 3. Lowest-order diagram contributing to the electron
anomalous magnetic moment.

should be noted that with substitution (5) at hand it is
easy to calculate matrix elements between conducting
plates. Experimental tests of the predictions of m(a)
and b, g(a) are encouraged. Whereas mass deviations
are small [for instance, b, m, ~(1 cm)/ m,~= —10 "],
measurements of the changes of the electron
anomalous magnetic moment look more promising
[for instance, Bg,&(1 cm) = —10 "], since the dis-
tance of the Penning-trap electrodes used in recent
precision experiments9 is of the order of 1 cm.

The author gratefully acknowledges discussions with

~H. B. G. Casimir, Proc. K. Ned. Akad. Wet. Ser. B 51,
793 (1948).

2B. Lautrup, in Weak and Electromagnetic Interactions at
High Energies, edited by M. Levy et a1., NATO Advanced
Study Institute Series B, Physics, Vol. 13 (Plenum, New
York, 1976), Part A, p. 1.

3G. Barton, Proc. Roy. Soc. London, Ser. A 320, 251
(1970).

N. D. Birell and P. C. Davies, in Quantum Fieldsin Curved
Space (Cambridge Univ. Press, Cambridge, 1982).

5E. A. Power, Proc. Roy. Soc. London, Ser. A 292, 424
(1966).

6E. Fischbach and N. Nakagawa, Phys. Rev. D 30, 2356
(1984), and Phys. Lett. 149B, 504 (1984).

7K. Symanzik, Nucl. Phys. B190, 1 (1981).
8D. Deutsch and P. Candelas, Phys. Rev. D 20, 3063

(1979).
9P. B. Schwinberg et al. , Phys. Rev. Lett. 47, 1679 (1981),

and references cited therein.

744


