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Physical processes are viewed as computations, and the difficulty of answering questions about
them is characterized in terms of the difficulty of performing the corresponding computations. Cel-
lular automata are used to provide explicit examples of various formally undecidable and computa-
tionally intractable problems. It is suggested that such problems are common in physical models,
and some other potential examples are discussed.

PACS numbers: 02.90.+p, 01.70.+w, 05.90.+m

There is a close correspondence between physical
processes and computations. On one hand, theoretical
models describe physical processes by computations
that transform initial data according to algorithms
representing physical laws. And on the other hand,
computers themselves are physical systems, obeying
physical laws. This paper explores some fundamental
consequences of this correspondence. '

The behavior of a physical system may always be
calculated by simulating explicitly each step in its evo-
lution. Much of theoretical physics has, however,
been concerned with devising shorter methods of cal-
culation that reproduce the outcome without tracing
each step. Such shortcuts can be made if the computa-
tions used in the calculation are more sophisticated
than those that the physical system can itself perform.
Any computations must, however, be carried out on a
computer. But the computer is itself an example of a
physical system. And it can determine the outcome of
its own evolution only by explicitly following it
through: No shortcut is possible. Such computational
irreducibility occurs whenever a physical system can
act as a computer. The behavior of the system can be
found only by direct simulation or observation: No
general predictive procedure is possible. Computa-
tional irreducibility is common among the systems in-
vestigated in mathematics and computation theory.
This paper suggests that it is also common in theoreti-
cal physics. Computational reducibility may well be
the exception rather than the rule: Most physical
questions may be answerable only through irreducible
amounts of computation. Those that concern idealized
limits of infinite time, volume, or numerical precision
can require arbitrarily long computations, and so be
formally undecidable.

A diverse set of systems are known to be equivalent
in their computational capabilities, in that particular
forms of one system can emulate any of the others.
Standard digital computers are one example of such
"universal computers": With fixed intrinsic instruc-
tions, different initial states or programs can be de-
vised to simulate different systems. Some other ex-
amples are Turing machines, string transformation
systems, recursively defined functions, and Diophan-

tine equations. 2 One expects in fact that universal
computers are as powerful in their computational capa-
bilities as any physically realizable system can be, so
that they can simulate any physical system. 3 This is
the case if in all physical systems there is a finite den-
sity of information, which can be transmitted only at a
finite rate in a finite-dimensional space. No physically
implementable procedure could then short cut a com-
putationally irreducible process.

Different physically realizable universal computers
appear to require the same order of magnitude times
and information storage capacities to solve particular
classes of finite problems. 5 One computer may be
constructed so that in a single step it carries out the
equivalent of two steps on another computer. Howev-
er, when the amount of information n specifying an in-
stance of a problem becomes large, different comput-
ers use resources that differ only by polynomials in n.
One may then distinguish several classes of problems. 6

The first, denoted P, are those such as arithmetical
ones taking a time polynomial in n. The second,
denoted PSPACE, are those that can be solved with
polynomial storage capacity, but may require exponen-
tial time, and so are in practice effectively intractable.
Certain problems are "complete" with respect to
PSPACE, so that particular instances of them corre-
spond to arbitrary PSPACE problems. Solutions to
these problems mimic the operation of a universal
computer with bounded storage capacity: A computer
that solves PSPACE-complete problems for any n must
be universal. Many mathematical problems are
PSPACE-complete. 6 (An example is whether one can
always win from a given position in chess. ) And since
there is no evidence to the contrary, it is widely con-
jectured that PSPACE~P, so that PSPACE-complete
problems cannot be solved in polynomial time. A final
class of problems, denoted NP, consist in identifying,
among an exponentially large collection of objects,
those with some particular, easily testable property.
An example would be to find an n-digit integer that
divides a given 2n-digit number exactly. A particular
candidate divisor, guessed nondeterministically, can be
tested in polynomial time, but a systematic solution
may require almost all 0 (2") possible candidates to be
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tested. A computer that could follow arbitrarily many
computational paths in parallel could solve such prob-
lems in polynomial time. For actual computers that al-
low only boundedly many paths, it is suspected that no
general polynomial time solution is possible. 5 Nev-
ertheless, in the infinite time limit, parallel paths are
irrelevant, and a computer that solves NP-complete
problems is equivalent to other universal computers. 6

The structure of a system need not be complicated
for its behavior to be highly complex, corresponding to
a complicated computation. Computational irreduci-
bility may thus be widespread even among systems
with simple construction. Cellular automata (CA)7
provide an example. A CA consists of a lattice of
sites, each with k possible values, and each updated in
time steps by a deterministic rule depending on a
neighborhood of R sites. CA serve as discrete approx-
imations to partial differential equations, and provide
models for a wide variety of natural systems. Figure 1

shows typical examples of their behavior. Some rules
give periodic patterns, and the outcome after many
steps can be predicted without following each inter-
mediate step. Many rules, however, give complex pat-
terns for which no predictive procedure is evident.
Some CA are in fact known to be capable of universal
computation, so that their evolution must be computa-
tionally irreducible. The simplest cases proved have
k = 18 and R = 3 in one dimension, 8 or k = 2 and
R = 5 in two dimensions. 9 It is strongly suspected that
"class-4" CA are generically capable of universal com-
putation: There are such CA with k=3, R =3 and
k = 2, R = 5 in one dimension. 'o

Computationally, irreducibility may occur in systems
that are not full universal computers. For inability to
perform, specific computations need not allow all com-
putations to be short cut. Though class-3 CA and oth-
er chaotic systems may not be universal computers,
most of them are expected to be computationally ir-
reducible, so that the solution of problems concerning
their behavior requires irreducible amounts of compu-
tation.

As a first example consider finding the value of a
site in a CA after t steps of evolution from a finite ini-
tial seed, as illustrated in Fig. 1. The problem is speci-
fied by giving the seed and the CA rule, together with
the logt digits of t. In simple cases such as the first two
shown in Fig. 1, it can be solved in the time O(logt)

necessary to input this specification. However, the
evolution of a universal computer CA for a polynomial
in t steps can implement any computation of length t.

As a consequence, its evolution is computationally ir-
reducible, and its outcome found only by an explicit
simulation with length O(t): exponentially longer
than for the first two in Fig. 1.

One may ask whether the pattern generated by evo-
lution with a CA rule from a particular seed will grow
forever, or will eventually die out. " If the evolution is
computationally irreducible, then an arbitrarily long
computation may be needed to answer this question.
One may determine by explicit simulation whether the
pattern dies out after any specified number of steps,
but there is no upper bound on the time needed to
find out its ultimate fate. '2 Simple criteria may be
given for particular cases, but computational irreduci-
bility implies that no shortcut is possible in general.
The infinite-time limiting behavior is formally unde-
cidable: No finite mathematical or computational pro-
cess can reproduce the infinite CA evolution.

The fate of a pattern in a CA with a finite total
number of sites N can always be determined in at most
k+ steps. However, if the CA is a universal computer,
then the problem is PSPACE-complete, and so pre-
sumably cannot be solved in a time polynomial in N. '3

One may consider CA evolution not only from finite
seeds, but also from initial states with all infinitely
many sites chosen arbitrarily. The value at'~ of a site
after many time steps t then in general depends on
2h. t ~ Rt initial site values, where A. is the rate of in-
formation transmission (essentially Lyapunov ex-
ponent) in the CA. 9 In class-1 and -2 CA, information
remains localized, so that A. =0, and at'~ can be found
by a length O(logt) computation. For class-3 and -4
CA, however, A. ) 0, and a~'~ requires an O(t) com-
putation.

The global dynamics of CA are determined by the
possible states reached in their evolution. To charac-
terize such states one may ask whether a particular
string of n site values can be generated after evolution
for t steps from any (length n+2k. t) initial string.
Since candidate initial strings can be tested in O(t)
time, this problem is in the class NP. When the CA is
a universal computer, the problem is in general NP
complete, and can presumably be answered essentially
only by testing all O(k" +2~') candidate initial
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FIG. 1. Seven examples of patterns generated by repeated application of various simple cellular automaton
four are probably computationally irreducible, and can be found only by direct simulation.

rules. The last
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strings. 's In the limit t ~, it is in general undecid-
able whether particular strings can appear. '6 As a
consequence, the entropy or dimension of the limiting
set of CA configurations is in general not finitely com-
putable.

Formal languages describe sets of states generated
by CA. '7 The set that appears after t steps in the evo-
lution of a one-dimensional CA forms a regular formal
language: each possible state corresponds to a path
through a graph with t'l ( 2" nodes. If, indeed, the
length of computation to determine whether a string
can occur increases exponentially with t for computa-
tionally irreducible CA, then the "regular language
complexity" t'l should also increase exponentially, in
agreement with empirical data on certain class-3 CA, '7

and reflecting the "irreducible computational work"
achieved by their evolution.

Irreducible computations may be required not only
to determine the outcome of evolution through time,
but also to find possible arrangements of a system in
space. For example, whether an x&&x patch of site
values occurs after just one step in a two-dimensional
CA is in general XP-complete. ts To determine wheth-
er there is any complete infinite configuration that sat-
isfies a particular predicate (such as being invariant
under the CA rule) is in general undecidable's: It is
equivalent to finding the infinite-time behavior of a
universal computer that lays down each row on the lat-
tice in turn.

There are many physical systems in which it is
known to be possible to construct universal computers.
Apart from those modeled by CA, some examples are
electric circuits, hard-sphere gases with obstructions,
and networks of chemical reactions. '9 The evolution
of these systems is in general computationally irreduci-
ble, and so suffers from undecidable and intractable
problems. Nevertheless, the constructions used to
find universal computers in these systems are arcane,
and if computationally complex problems occurred
only there, they would be rare. It is the thesis of this
paper that such problems are in fact common. 20 Cer-
tainly there are many systems whose properties are in
practice studied only by explicit simulation or exhaus-
tive search: Few computational shortcuts (often stated
in terms of invariant quantities) are known.

Many complex or chaotic dynamical systems are ex-
pected to be computationally irreducible, and their
behavior effectively found only by explicit simulation.
Just as it is undecidable whether a particular initial
state in a CA leads to unbounded growth, to self-
replication, or has some other outcome, so it may be
undecidable whether a particular solution to a differen-
tial equation (studied say with symbolic dynamics)
even enters a certain region of phase space, and
whether, say, a certain n-body system is ultimately
stable. Similarly, the existence of an attractor, say,

with a dimension above some value, may be undecid-
able.

Computationally complex problems can arise in
finding eigenvalues or extremal states in physical sys-
tems. The minimum energy conformation for a poly-
mer is in general %P-complete with respect to its
length. 2' Finding a configuration below a specified en-
ergy in a spin-glass with particular couplings is similar-
ly XP-complete. 22 Whenever the stationary state of a
physical system such as this can be found only by
lengthy computation, the dynamic physical processes
that lead to it must take a correspondingly long time. 5

Global properties of some models for physical sys-
tems may be undecidable in the infinite-size limit (like
those for two-dimensional CA). An example is
whether a particular generalized Ising model (or sto-
chastic multidimensional CA23) exhibits a phase tran-
sition.

Quantum and statistical mechanics involve sums
over possibly infinite sets of configurations in systems.
To derive finite formulas one must use finite specifica-
tions for these sets. But it may be undecidable wheth-
er two finite specifications yield equivalent configura-
tions. So, for example, it is undecidable whether two
finitely specified four-manifolds or solutions to the
Einstein equations are equivalent (under coordinate
reparametrization). 24 A theoretical model may be con-
sidered as a finite specification of the possible behavior
of a system. One may ask for example whether the
consequences of two models are identical in all cir-
cumstances, so that the models are equivalent. If the
models involve computations more complicated than
those that can be carried out by a computer with a
fixed finite number of states (regular language), this
question is in general undecidable. Similarly, it is
undecidable what is the simplest such model that
describes a given set of empirical data. 25

This paper has suggested that many physical systems
are computationally irreducible, so that their own evo-
lution is effectively the most efficient procedure for
determining their future. As a consequence, many
questions about these systems can be answered only by
very lengthy or potentially infinite computations. But
some questions answerable by simpler computations
may still be formulated.
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For a more informal exposition see: S. Wolfram, Sci.
Am. 251, 188 (1984). A fuller treatment will be given else-
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