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Acceleration of Electrons by the Interaction of a Bunched Electron Beam with a Plasma
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A new scheme for accelerating electrons, employing a bunched relativistic electron beam in a

cold plasma, is analyzed. We show that energy gradients can exceed 1 GeV/m and that the driven
electrons can be accelerated from yomc to 3yomc before the driving beam slows down enough to
degrade the plasma wave. If the driving electrons are removed before they cause the collapse of the
plasma wave, energies up to 4yomc are possible. A noncollinear injection scheme is suggested in

order that the driving electrons can be removed.

PACS numbers: 52.75.Di, 29.15.—n

In the past several years, the laser-plasma interac-
tion as a mechanism for charged-particle acceleration
has attracted interest' because of the large electric field
which a plasma can support ( —100 GeV/m). Howev-
er, these "beat-wave" accelerators rely heavily on
the state of the art of laser technologies. For example,
the scheme requires a fine tuning between the plasma
frequency co~ and the beat-wave frequency of the laser
in order that the wake plasma wave excited by the laser
beat wave grows linearly. This in turn either puts a
severe constraint on the uniformity of the plasma den-
sity, or relies on very high-power lasers to shorten the
time of growth. In addition, it may be necessary to
deliver the laser energy in a pulse shorter than 10 ps in
order to avoid competing instabilities. 5

This Letter presents another scheme for a plasma
accelerator. Lasers are not required and large energy
gradients are attained. The idea is to inject a sequence
of bunched high-energy electrons into a cold plasma.
As in the two-stream instability, the streaming elec-
trons lose energy to the background plasma by exciting
a wake plasma wave. If a late-coming electron bunch
rides on the wave at a proper phase, it will be boosted
to a higher energy as a result of the longitudinal elec-
tric field in the wave.

Consider a system in which a chain of relativistic
electron bunches with initial Pp = ub/c & 1 stream
through a cold, uniform plasma along the z axis with a
constant separation d. With the assumption that the
longitudinal spread I& of each electron bunch is much
smaller than the plasma wavelength, X~, the whole
bunch of q electrons behaves as a single particle with
charge g = qe.

The linearized equation of motion and equation of
continuity for the cold, nonrelativistic background
plasma are Btv&~= —(e/m)E~ and ct, n~~+n&pV '

v&~
= 0, respectively, where E~ is the electric field of plas-
ma and beam: E& = E»+ E&&, where the plasma velo-
city is v~ = v~p+ v&~ (vip= 0), and the plasma density

is n~ =n~p+n~t (n~p && n&~). For N driving-electron
bunches, the charge and current densities are

p, (x) = —en~, (x) —g +(x —x, ),

J, (x) = —en~ pvv ~ (x ) —g vb X5 (x —x, ),

V'(8,'+k,')@,=4 g ga,'n(x —x, ),

where

and

k~ =~p/ub = (4vrn~pe /m ub)

x —x; = pe~ —[(N —i)d —(]e3.

The solution of this equation requires that we solve

(tlt2+k~')@, = —g Qt)t2(1/(x —x; ~), (4)

respectively, where x = pc~ +z c3 in cylindrical coordi-
nates, x s are the instantaneous positions of the N
bunches, x; = [ubt + (N —i )d ]e3, and the summa-
tions are overi =1, . . . , N.

The longitudinal electric field in the wake of these N
bunches is Et = —(I/c)B, A~ —V'$&. For an ultrarela-
tivistic electron beam, where pp= 1, ub is approxi-
mately constant over several plasma wavelengths,
even though substantial energy is transferred to the
plasma wave. It is thus convenient to work with the
variable (=z —ubt ~ 0 which measures the distance
behind the last bunch, and we may put 8, = —ub t)& and
8, =8&. In the Coulomb gauge, the equation for the
scalar potential is '7 @~ = —47rp&, and that for the vec-
tor potential is '7~A~ = —(4m. /c) J& —ppV'Btp, , where
V2~ is the transverse Laplacian and (1 —pp) is neglect-
ed.

To solve for P, , we take the g derivative twice and
combine the result with the equations of motion and
continuity, and Eq. (1) to obtain
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which has the solution
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4i (P ( ) = g X' —(1/ I x —x; I ) + k~ )t d (' sink~ ( ( —(') (1/ ~
x ' —x

~ ),
t

&br and Ix' x'I = (p + [(N —I)d —('1 I' . A favorable aspect of our acceleration scheme is that
the phase velocity, co~/k~, of this plasma wave is the same as the beam velocity vb. This contrasts with the two-
stream instability observed in a continuous beam. In that case, even though the phase velocity is shifted slightly
below velocity, the corresponding y may be significantly below the y of the beam. This would be a serious disad-
vantage for the purpose of collective particle acceleration.

Next, turn to the vector potential A~. Taking the ( derivative on both sides of the equation for the vector poten-
tial, and invoking the equation of motion for the current term, we obtain

Bt (V' ~
—Ppk~ )A) = —Pp'7 (6( + k~ )@) + 4vr g Pp /8)5 (x —x; ) . (6)

In combination with Eq. (4), the above equation decouples entirely from the scalar potential. With removal of the

( derivative common to each term, this equation further reduces to an inhomogeneous modified Helmholtz equa-
tion in two dimensions for each component of A, .

We are actually interested in the wake field trailing behind the N bunches on the z axis, i.e., at position x = z e3.
In that case

2~g X 1 ~t sink~ ((—(')
k~ [(N —1)d —(1 k [(N —I)d —(']k~ d('

where A~ = 2mk~ ', and the corresponding vector potential in Eq. (6) reads

OO &2

l~ (()
g XP ~~G 1 PP PP ) [,2+ [(N,)d ~2 ~3/2
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FIG. 1. Potentials as functions of distance behind the last
bunch.

where E& is the modified Bessel function of order 1.
Plots of @& and A&, as functions of ~(~ are shown in

Fig. 1, where N = 5 and d = A~. Although A &, dimin-
ishes monotonically, @& remains oscillatory.

The longitudinal electric field is computed by taking

( derivatives since E~, = B&(A ~,
—@t). The maxima

of E&, are at
~ ( ~

= (n + —, ) A~, where n is any nonnega-
tive integer, and the contribution to the maximum E&,
comes predominantly from the scalar potential. If the
separation between the driven bunch and the last driv-
ing bunch is such that

~ ( ~
is around A~/2, the energy

gradient attainable for each electron in the driven
bunch is

e = —eE), ——8m eg/A~.

As an example, consider a plasma of density n~p 10'
cm 3 (which sets the limit on the longitudinal bunch
spread: /b (( X~ =1.0 mm). If each bunch consists
of q =Sx10' particles, Eq. (9) shows that a=2.4
GeV/m. This treatment ignores nonlinear plasma ef-
fects and self-consistency effects that act to slow the
driving bunches. It is only valid if the electric field
does not approach the cold wave-breaking amplitude,
and if the electric energy is small compared to the free
energy of the driving bunches. The first condition
provides an upper limit on the maximum allowed en-
ergy gradient, e,„=(n~p) '/2 eV/cm = 3.2 GeV/
m & 2.4 GeV/m, so our linear theory is still reason-
able. The second condition requires that (E&~,/8~)L( qypmc /A, where L is the length of the beam-
plasma interaction region and 3 is the beam area. For
the above example, and 100-p,m radii bunches, this
limits the effective acceleration length to L & 0.74+p
cm.

To complement the above analytic treatment self-
consistent numerical simulations have been done by
use of a one-and-two-halves dimensional (x, v„, u~,
v, ), relativistic, fully electromagnetic, particle code.
Two bunched electron beams with mean densities of
10 3 and 10 5 relative to background electron plasma
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served as the driving and driven beams, respectively.
Bunching was represented by density profiles of the
form 1+sinkx, 180' out of phase for the two beams.
Each beam was initially monoenergetic with momen-
tum (py)0=5. 9, and had sixteen bunches within the
2048-gridpoint periodic system. The speed of light was
chosen to satisfy kpc =co~ in order to best excite the

lasma wave. Since the background plasma had an ini-p asm
2= —3tial temperature T/mc = 10, this wave had essen-

tially zero group velocity.
Figure 2 shows the momentum distribution of the

two beams at the time (co~t = 88) when the maximum
momentum, (py), „=16, was attained. The wave
grew so that the bulk of the driving and driven elec-
trons were in the regions of greatest negative and posi-
tive force, respectively. The driving electrons lost
momentum to the wave until they were significantly
slower than the wave, i.e., until py = 1. They quickly
fell behind the wave until they reached the accelerat-
ing region, where they regained momentum and ener-
gy from the wave until it essentially vanished. Except
for the relatively short interval when the driving elec-
trons fell behind the wave, the force on the bulk of the
driven electrons was equal in magnitude to that on the
driving electrons, but always positive. Thus we expect
(py)~,„=3(py)0 —2, which was well satisfied in our
simulation.

The cycle of wave growth and decline repeated as
the simulation continued. However, further accelera-
tion of the driven electrons did not occur. In falling
behind the wave by a half wavelength, most of the
driving electrons had come into phase with the maxi-
mally accelerated driven electrons, and both groups
were decelerated together as the wave was recreated
during the second cycle.

One way to continue the acceleration of the driven
electrons is to remove the driving beam from the plas-
ma before it begins to destroy the wave. Therefore,
the previous simulation was repeated (but with
T/mc = 10 ), and when the maximum wave ampli-
tude was attained (co~t = 48), the charge of the driving
electrons was set equal to zero.

Figure 3 shows the momentum distribution at
co~t = 512, when the driven electron momenta were as
large as py=69. 5 and were still increasing. A more
recent run gave maximum attainable value of
(py), „=130 at cu~t = 1568. This agrees well with the
modified wave-breaking limit of Tajima and Dawson,
(py), „=4(py )o ——142. The behavior of the
lowest-energy driven electrons suggest that the veloci-
ty of the wave had increased to py = 9 for the later
stages of the simulation, probably because these
lower-energy driven electrons were serving as a weak
driver for the wave. We speculate that this effect may
enable one to achieve still higher energies.

In the first simulation, the maximum energy was
gained by those electrons in the region of maximum
positive force, one-half wavelength behind the bulk of
the driving electrons. In the second, the maximum
energy was gained by those electrons initially at the
potential-energy peak of the wave, three-quarter
wavelengths behind the driving bunches. Use of
beams 270' out of phase would double the relative
number of high-energy electrons. However, the large
number of low-energy driven electrons can be reduced
only by use of significantly shorter driven bunches.

Experimentally, it may be possible to remove the
driving electrons from the acceleration region by em-
ploying a noncollinear injection scheme. The basic10

idea is to inject two sets of electron bunches at a slight
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FIG. 2. Momentum distribution of the driving- and
driven-electron beams when the latter has attained its max-
imum upper limit.
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FIG. 3. Momentum distribution of the driven electrons
before the maximum upper limit is attained. This case
differs from that of the preceding figure in that driving beam
is removed from the system when the plasma wave reaches
its maximum amplitude, at which time the driving beam has
the momentum distribution shown. Note the different
scales in the two figures.
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angle, 20, towards each other and then accelerate parti-
cles down the axis of symmetry in the superposed
wake fields of the two intersecting beams. In this way,
the electrons in the driving bunches may pass out of
the interaction region before they can reabsorb the ac-
celerating waves. Such a scheme also allows one to
stage the driving beams by bringing in fresh driver
beams at different positions.

An advantage of this noncollinear injection scheme
is that the effective phase velocity Uph of the super-
posed wake field can be controlled by selecting the an-
gle of the two intersecting waves, i.e. , v» = v»/
cos8 & t » ( = t t, ). In principle, one can choose an
angle 0 such that Uph is larger than c. However, since
the energy gain is limited by the finite spatial extent of
the interaction region, which is proportional to sin 0,
there should be an optimum angle that gives max-
imum energy gain per stage. A detailed discussion will
be reported elsewhere.
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