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In this Letter we show that the fixed points of the Ikeda map are more unstable to perturbations
with a short-scale transverse structure than to plane-wave perturbations. We correctly predict the
most unstable wavelength, the critical intensity, and the growth rates of these disturbances. Our
result establishes that, for a large class of nonlinear waves, spatial structure is inevitable and drasti-
cally alters the route to chaos. In an optical cavity the consequence is that the period-doubling cas-
cade is an unlikely scenario for transition to optical chaos.

PACS numbers: 42.65.—k

In this Letter, we announce a new and unexpected
result, an instability whose consequences have ramifi-
cations for a large class of nonlinear wave problems
whose dynamics can be described by envelope equa-
tions. Specifically, it deals with periodically forced
field equations of the universal nonlinear Schrodinger
type. This instability changes the whole character of
the route of the system from a simple to a turbulent
state. It generates spatial structure, and the subse-
quent onset of chaotic behavior completely bypasses
the period-doubling scenario which is relevant if spa-
tial structure is ignored. Moreover, the scenario which
does emerge has a universal character of its own. Ex-
amples of this phenomena are found in optics, either
in the transmission along optical fibers or in optically
bistable cavities. ' It is in the latter context that this
work is presented.

In this problem we are interested in the long-time
state of a continuous laser signal which is recirculated
through a nonlinear medium. In examining one par-
ticular manifestation of optical bistability (a ring cavity
with Kerr nonlinearity), Ikeda2 wrote a map expressing
the (complex) amplitude g„+t of the electric field E
on the ( n + 1)st pass through the cavity as a function
of electric field amplitude on the nth pass;

g„+ t
= a + Rg„exp[i go+ ipLN(I)/2].

In (1), a is the amplitude of the input field, R ( 1 the
reflectivity of the mirrors, @o the detuning parameter,
p is (effectively) the length of the nonlinear medium,
and N(g„g„') measures its nonlinear response. Two
cases are usually studied: (1) the saturable medium,
N(I) = —(1+2I) ', (2) the Kerr medium, N(I)
= —1+2I, which is the small intensity limit of the
saturable case. Equation (1), called the Ikeda map, is
a two-dimensional invertible map and exhibits a
variety of behavior which is already well documented
in the literature. 2 ~ In various parameter ranges (the
two parameters which are varied are a and p), one
finds multiple fixed points (see Fig. 1) and sequences
of period-doubling bifurcations leading to chaotic at-
tractors.

The map (1) invokes the plane-wave approximation

in which diffraction effects are neglected. The purpose
of this Letter is to point out that this assumption is not
justified even for cases in which the input beam is very
slowly varying in the transverse direction x(x,y) and
the Fresnel number is large. The reason is that the
fixed point solutions of the plane-wave map (1) are
more unstable to perturbations with a short-scale
transverse structure than they are to perturbations
with plane-wave structure. To emphasize this point,
the numerical experiment discussed in this Letter is
run at a parameter value p for which the fixed points
of the Ikeda map are stable!

This discovery has important ramifications. First, it
shows that the initial bifurcation of the system intro-
duces an extra dimension into the problem, a short-
wave transverse excitation of temporal period two.
This extra dimension affects significantly the subse-
quent behavior of the system. As the stress parame-
ters are raised, no period-doubling cascades into chaos
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FIG. l. (a) The multivalued response of the amplitude of
the fixed point ~g~ vs a at fixed values of p for the Ikeda
map. (b) A graph of h(p„, r) vsW~=tyKfor p, =pI=pgg'
equal to 0.11 and 0.24,
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are observed. Instead, chaotic behavior arises as a
temporally irregular sharing of energy between the
short-wave transverse structure and a long wavelength
background. This modulation causes the system to
drift back towards its original fixed point (at which the
amplitude of the short-wave transverse excitation is
zero) which, for these parameter values, is an unstable
saddle point. It is the sensitive behavior of the system
in this neighborhood that gives rise to a modulational
and intermittent chaotic behavior.

Second, these findings show that in nonlinear pas-
sive cavities transverse spatial structure is inevitable.
It had previously been noted that if the amplitude of
the input Gaussian were to exceed a value correspond-
ing to the point B in Fig. 1(a), then part of the signal
would switch to the upper branch CD and part would
remain on the lower branch AB thereby creating large
gradients in the electric field envelope and making dif-
fraction important. In this Letter, we have chosen
values of the input intensity so that one is always on
the lower branch AB of Fig. 1(a). In this case, it is the
high transverse wave-number instability which makes
the diffraction term important. It turns out that the
most unstable wave number which the dynamics
chooses is always such that diffraction is as important
as nonlinearity. In this respect, the instability is rem-
iniscent of the Benjamin-Feir or modulational insta-
bility which is so widespread in physics. While the two
instabilities arise from two different mechanisms, they
should share the property of ubiquity.

The Ikeda map arises by combining the equation for
the propagation of the electric field envelope G„(x,z)
on the nth pass around a nonlinear medium in the
shape of a rectangular circuit of length L (0 & z & L)

2 iG~+ y V G„+pN ( G„G„')G„=0, (2)

with the boundary condition which gives the starting
profile G„+t(x, 0) in terms of the input field envelope
A (x) and the value of the electric field envelope
G„(x,L) at the end of the nth pass,

G„+&(x,0) = JTA (x)+Re G„(x,L). (3)

In (2), the parameter y=ln2/4mI', where I' is the
Fresnel number and T= 1 —R is the transmission
coefficient.

Observe that the Ikeda map (1) is obtained by as-
suming that both JTA (x) = a and the response
G„(x,z) are x independent. Usually the stability of
fixed points of (1) is studied with respect to perturba-
tions with no transverse structure, yielding period-
doubling cascades, etc.

However, the class of allowable perturbations is
much broader and includes modes with an x-depen-
dent spatial structure. Our study of these proceeds in
two parts: (i) Using a linearization we compute the
most unstable spatial wavelength; (ii) we adapt the
results of this linearization to a numerical experiment
whose input envelope has a Gaussian profile and com-
pute the growth rate and threshold intensity of the in-
stability. The linearization (i) begins by setting

G„(x,z) = [~g~+y„(x,z)]exp[ ,'ipN(I)z+i a—rgg], I=gg',

in (2), calculate the (x,z) structure of y„(x,z) from (2) and use the solution in the map (3). The algebra is
straightforward and one finds

y (x z ) els z(a eiK x+ b e
—iK x) + e —ivz( c eiK + d e

—iK x)

for 4vz=y2K4 —2pyN'(l)IK2 ) 0, and K = K2+ K~. The coefficients a„, b„, c„, and d„are related, i.e. ,

—pN'(l)ld„'= [ —2v —yK +pN'(l)I]a„, —pN'(l)lb„'= [2v —yK +pN'(I) I]c„.
Since I is small on the lower branch, we can use the Kerr approximation and write N(l) = —1+2I. The map (3)
can be written y„+ t (x, 0) = Re'~y„(x, L ), P = @o+ —,

'
pLN (I), which gives (a„+t, c„+t ) T= M( a„,c„)T, with

i

e'"~(c o@s+iP sin@) ie '"~(i —P) sin@
M =R ie'"L(i+P) sin@ e '"L(cos@—iPsin@),

where 2vp=2p, —r, r=yKz, and p, =pl. Looking for solutions (a„,c„) = ( —1)"p"(a,c)T, we find pz —2bpR
+R2= 0 where 2Rb = TrM. The potentially unstable root is p/R = b+ (b —I)'i where

b (p„i) = cos(gati+ p, ) cosv+ [(~—2p, )/2v] sin(ili+ p, ) sinv

with ili= m. +@0——,'p, 2v= (r —4p, ~)'i and we have set L =1 without loss of generality. The case v = —o-2 & 0,
i.e., 7 ( 4p, , is realized by an analytic continuation v = —i o- and the stability with respect to plane-wave perturba-
tions can be investigated by setting K = 0, whence b (p„0) = cos(i'+ p, ) —p, sin(i' + p, ). The stability threshold
(i.e., p = 1) is reached when b = b, = —,

' (R + 1/R). In Fig. 1(b) we display the graphs of b (p„, 7. ) for two values of
p, =0.11, 0.24. We observe the following: (1) As ~ increases from zero, b (p„~) increases and reaches a max-
imum at a unique value of v =yL . The value p, = p,, =0.11 is the lowest value of the intensity p, =pI for which
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period doubling can occur. (2) For p, = 0.24, there is a
narrow band (1.29 «& 1.55) of unstable wave
numbers. The one with the maximum growth rate is
T = 1.43. For y = 1.67 & 10, this corresponds to a
wavelength of A. =2m/K =Wy2m/47=0. 21. (3) For
these parameter values, the most unstable wave
number lies outside the Benjamin-Feir unstable band,
7 ( 4p, . In this band, the signal is amplified as it
propagates down the nonlinear medium and should the
most unstable wave number lie in this range, the am-
plification per pass is significantly increased. The
function b (p„r) was also drawn as function of 7 for
several different situations, and the following observa-
tions were made: (1) b (p„0) & b, for all values of p, ,
consistent with the result obtained in Ref. 4 that, for
p = 6, no period doubling of the Ikeda map occurs.
(2) The defocusing case, p y & 0; for p = —6,
@0———0.4, p= —7r +@0—

2 p, which is the symmetric
counterpart of Fig. 1(b), b (p„r ) begins from the
same value at 7 = 0 but then decreases. For these
parameters, all modes are stable, but K = 0 is the least
stable. (3) However, short-scale transverse instabili-
ties can occur even in the defocusing case. For exam-
ple, for p = —9, the critical intensity p, is less for finite
K modes, although generally the values of the intensi-
ty at which period doubling occurs are greater if the
medium is defocusing (p y & 0) than when it is focus-
ing (py ) 0).

Finally, we give the results of a numerical experi-
ment in which only one transverse dimension x was
used. The experiment was carried out with the use of
an input beam whose envelope JTA (x) has a Gauss-
ian profile, which is a more accurate model for real ex-
periments. Because the width of the Gaussian is
several times greater than the wavelength of the most
unstable transverse fluctuation, a WKB (geometrical
optics) approach is valid, and, to leading order, agrees
with the results obtained by assuming the unperturbed
solution g(x) [obtained by solving (1) for the fixed
point with a = a(x)] to be locally constant. We will

correctly predict the critical wavelength and critical in-
tensity. The postbifurcation evolution of the period-
doubled transverse fluctuation requires one to consid-
er the loss of energy from the center of the beam to
the wings in addition to the energy input to the fluc-
tuation from instability. Therefore, in order to sustain
the growth in the middle part of the beam, the intensi-
ty p, (which is proportional to the input intensity a)
has to be sufficiently greater than p, , [the value at
which disturbances can possibly grow if a(x) were
constant] in order to offset this radiation loss.

Figure 2 shows the electric field envelope after (a)
120 passes at which time the system is very close to its
(weakly) unstable fixed point (in function space) and
(b) an overlay of the output data for passes
n = 260—280 inclusive at which stage one can observe
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that the transverse perturbation has begun to grow.
Observe the period-two temporal character of the
growing perturbation. The wavelength of the pertur-
bation (the distance between two successive crests on
even or odd passes) at the maximum is 0.21 which is

FIG. 2. (a) The (weakly) unstable fixed point; i.e., the
solution of (2) and (3) for y= 1.67x 10 ', p = 6, go=0.4,
and MTA (x) =0.12exp( —x ) after 120 passes. (b) An
overlay of the output for passes n = 260 to 280 which alter-
nates on successive passes between the two interwoven
graphs. The wavelength of the fluctuation at the crest,
which is equal to the distance between crests of either one of
the interwoven strands, is 0.21. The points 3 and 8 corre-
spond to values of p, =0.117. (c) The growth of the loga-
rithms of the amplitudes of the transverse perturbation as a
function of n at the four locations x = 0, 0.18, 0.37, 0.55. (d)
The number of passes vs p, required for the instability to
reach a prescribed amplitude.
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5E 1 ~
&

2 r —2p,

E AB ~» K (1 —4p, /r)tl2
(4)

where the first term is the energy gained in the excited
region AB and the second is that lost through being
carried out of the region at a rate measured by the
group velocity of the most excited wave in the packet.
The result is 0.04. Therefore, the percentage increase
in amplitude is 0.02. In Fig. 2(c), we draw the graphs
of the logarithms of the amplitudes at various stations
x = 0, 0.18, 0.37, 0.55 [in Fig. 2(b)] and observe that in
each case the growth rate is indeed 0.02.

Finally, we compute the effective critical intensity
iu, „namely, that value of p, corresponding to the max-
imum of the profile in Fig. 2(b), for which the right-
hand side of (4) is zero. We predict p, ,=0.205. In
Fig. 2(d) we draw the number of passes needed to ob-
serve the instability (in other words, for its amplitude
to grow to a certain amount) versus p, . Note that the
curve is asymptotic to a value of p, = 0.205.

The purpose of this Letter has been to demonstrate
how transverse fluctuations and diffraction effects are
inevitable in passive linear cavities. Because these
modes arise as instabilities, they simply cannot be re-
moved by an appropriate tailoring of the input profile.
The subsequent development of these lower-branch

exactly as predicted by theory. We also verified the
critical wavelength at p, = 0.26 is 0.22, again as predict-
ed by theory. We observe in Fig. 2(b) that the pertur-
bations initially grow of their own accord down to am-
plitudes of 0.13 which corresponds to a value of iu, of
pI = 6(0.14)2=0.117, again in close agreement with
theory.

In order to compute the effective growth rate per
pass, we calculate the energy input to and loss from
the region AB of Fig. 2(b). The rate of energy change
per pass per unit length is

instabilities and their role in causing modulational
chaos will be discussed in a review paper. The two-
dimensional degeneracy of these unstable modes (ob-
serve that the wave number yL, and not its direction
K, is chosen by dynamical considerations) also offers a
challenge to the theoretician. It is not yet clear under
what circumstances in a two-transverse-dimension
medium that circular rings, independent of the azimu-
thal direction, will be the favored mode of oscillation
for amplitudes on the lower branch.
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