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Tricritical Phenomena in Rotating Couette-Taylor Flow
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We present measurements of the fluid velocity in a rotating Couette-Taylor system of aspect ratio
L near l. At small angular speed cv of the inner cylinder, the system contains a symmetric vortex
pair. As ~ increases, the vortex boundary moves off center, and a suitably defined order parameter
P becomes nonzero. This bifurcation changes from forward to backward as L is increased. Results
for P agree quantitatively with the predictions of a Landau model for tricritical behavior.

PACS numbers: 47.20.+m, 05.70.Fh, 64.60.Kw

The close conceptual relationship between bifurca-
tions in pattern-forming nonequilibrium systems and
equilibrium phase transitions has long been appreciat-
ed, but, to our knowledge, only forward bifurcations,
corresponding to ordinary critical points, have been
studied experimentally by quantitative methods. ' Con-
siderable theoretical interest in more complicated sys-
tems has developed2 recently, involving, for instance,
backward or forward bifurcations to time-periodic or
stationary states and codimension-two bifurcations.
An interesting case arises when a forward bifurcation
becomes backwards as a parameter is varied. This situ-
ation corresponds to the change from continuous tran-
sitions upon crossing a line of critical points to discon-
tinuous ones associated with a line of first-order phase
transitions, such as occurs at a tricritical point.

In this Letter, we report extensive, quantitative fluid
velocity measurements near such a tricritical point in a
fluid mechanical system driven far from equilibrium
by an external stress. Our data can be fitted very accu-
rately by a Landau model equivalent to that used near
symmetric equilibrium tricritical points. 4

The physical system is rotating Couette-Taylor flow
between two coaxial cylinders with the inner one rotat-
ing at an angular speed co. The active section of the
apparatus is so short that there is only one vortex pair.
This means that the aspect ratio L (the ratio of the
length H to the width d of the gap between the
cylinders) is about 1. If co is smaller than a critical
value tot, the vortices are symmetric, and the boun-
dary between them is in the center (assuming the ap-
paratus is "perfect"). If the speed is greater than cot,
one vortex starts to grow at the expense of the other.
This is illustrated by the data for the axial velocity
component v, which are shown in Fig. 1 as a function
of axial position for various co. The solid circles corre-
spond to the symmetric state with ~ ( co~, and they
give v, = 0 at the geometric center of the system.
When to ) tot, the zero crossing of v, can move either
to the right (solid symbols) or to the left (open sym-
bols). In either case, the symmetry is broken and a bi-
furcation (phase transition) has taken place.

For a perfect system, the symmetry is broken at
co= tdt, either smoothly, with the zero crossing for v,

being displaced from the center continuously as to

grows beyond cot, or abruptly. The former case corre-
sponds to a forward bifurcation, or a second-order
transition, and occurs for relatively small aspect ratios
L ~ L, with L, =1.255 for our system. The latter cor-
responds to a backward bifurcation, or first-order tran-
sition, and is observed for L, ( L ( L, where
L, = 1.292 for our experiment. This phenomenon has
been studied previously by Benjamin and Mullin, s

Cliffe, 6 Lucke et al. , and Schmidt, s but, to our
knowledge, there have been no systematic, quantita-
tive measurements of an appropriate order parameter
which can be compared, for instance, with the Landau
theory of behavior near a tricritical point.

In our apparatus the inner cylinder radius was
r& = 1.737 cm, and the radius ratio q —= rt/r2 (r2 is the
outer cylinder radius) was 0.500. The fluid was con-
fined between nonrotating axial boundaries whose
separation H was adjustable. The aspect ratio L = H/d
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FIG. 1. The axial velocity v, for various angular velocities
~l as a function of axial position. The scale of the abscissa is
normalized by the active apparatus length H. The measure-
ments are for an aspect ratio of 1.129. Circles: co = 2.56 s
triangles: cu = 2.86 s ' lozenges: co = 3.28 s '. Solid sym-
bols correspond to the branch which is reached by quasistati-
cally increasing cu in our apparatus. For this run, co~ (see
below) was 2.794 s
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E=Qj cot l. (2)

Concentrating on Fig. 2(a), we see that the bifurcation
is imperfect [Q (e) appears "rounded" near e = 0].
Quasistatic increases of co always resulted in a vortex-
boundary displacement in the same direction, corre-
sponding to the upper, favored branch. However, by
appropriate manipulation of the movable boundary of
the system, followed by an increase of cu from t0 & cot

to co & co~, it was possible to prepare a state corre-
sponding to the unfavored, lower branch. Measure-
ments of Q(e) were then possible with e decreasing.
For e near zero, that state ceased to exist, and a transi-
tion to Q ) 0 on the favored branch occurred, as illus-
trated by the solid lozenges in Fig. 2(a). There the
data agree extremely well with the data obtained by in-
creasing e quasistatically from e & 0 (open circles).

To the data in Fig. 2(a) we fitted a Landau model
with a "free energy" Fgiven by

F= —hQ ——,eQ + —
Q + —

Q . (3)

was varied in a narrow range near 1 by changing Hand
was measured with an accuracy of 0.2%. The column
was horizontally mounted. The inner cylinder's angu-
lar speed was controlled accurately by a frequency syn-
thesizer. The fluid was a 50% (by volume) solution of
glycerol in water. Its temperature was 21.0 C and con-
stant to within +5X10 3'C. Its kinematic viscosity
as determined with an Ostwald viscometer was 0.0661
cmzis. The fluid velocity was measured using laser
Doppler velocimetry (LDV). For this purpose, the
fluid was seeded with 1.2 p, g/cm3 of polystyrene-latex
spheres of diameter 1.09 p, m. The velocimeter was
mounted on a motor-driven stage and could be moved
with a resolution of 1.3X10 3 cm. We measured the
axial velocity component at a radial distance of about
0.24 cm from the inner cylinder at 25 points equally
and symmetrically spaced along the cylinder axis. The
separation of these points was H/30. After completing
all of these measurements, we increased L to the max-
imum possible value for our apparatus (L = 15)
without changing the fluid and determined cu, = 1.511
s ' for the onset of Taylor vortex flow in the infinite
system. This corresponds to a critical Reynolds9

number R, —= r tee, d/v = 69.0, which compares well
with the theoretical valueto R, = 68.2.

In analogy with the definition used by Lucke et ai. ,
7

we define an order parameter by
f 0 pH

v, dz/„ Iv, I dz. (1)

For a perfect bifurcation, we expect that P = 0 for
co~cot and —1& P & 1 for co & cut. In practice, we
replace the right-hand side of Eq. (1) by the ratio of
the appropriate sums over our data points. Results for
P obtained at the three aspect ratios L = 1.129, 1.266,
and 1.281 are shown in Fig. 2 as a function of
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In this equation, we include even terms in P because a
priori for the perfect system we expect F to be indepen-
dent of the sign of P. Since the experiment reveals a
"rounded" transition to a favored branch, we include
also the lowest-order asymmetric term hP. In the
thermodynamic analogy, h plays the role of a field con-
jugate to P. In our system, this field presumably is
caused by imperfections in the apparatus. For given
values of the parameters h, e, g, and k, Q can assume
any value corresponding to a minimum of F, and, at

FIG. 2. Measured values of the order parameter Q [see
Eq. (1)] for various values of e for three aspect ratios, L
Data taken by quasistatically increasing e are shown as open
symbols, while solid symbols show data obtained by decreas-
ing e. The curves are the result of a fit by a Landau model
[see Eqs. (3) and (4)]. The solid portions are the stable
branches (minima in the "free energy"), and the dashed
portions show the unstable branches (maxima in the "free
energy"). In all cases, the upper branch is favored and is al-
ways followed when e is increased quasistatically from nega-
tive values. (a) shows data for L well below the tricritical
value (L, = 1.255), and (b) corresponds to L only very
slightly above L, . Note the qualitatively different behavior
near a=0, which is discussed in the text. (c) is for L suffi-
ciently greater than L, to observe the discontinuous transi-
tions resulting from the backward bifurcation, which are in-
dicated by arrows.
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the extrema of F, P (e) is given by

h+ eQ —gQ —kQ =0. (4)

O. I—
Oi

L t
= I.255

(b)

—02—

2.2 I

0

2. I—

2.0—

Lt.

1.9—

I. I 0 I. I 5 I.20
ASPECT RATIO, L

I

I.25

FIG. 3. The parameters g and ~] obtained by fitting Eqs.
(2) and (4) to the data as functions of the aspect ratio L
The data for cu] have been normalized by cu„ the critical an-
gular velocity for the onset of Taylor vortex flow in a system
of infinite L The open circles in (a) corr. espond to the data
shown in Fig. 2.

For h =0, it is easy to find the roots of Eq. (4)
analytically. For positive g, one obtains Q

—et' for
small e, corresponding to a forward bifurcation. This
square-root behavior is qualitatively evident from an
inspection of Fig. 2(a). Indeed, a least-squares fit of
Eqs. (2) and (4), adjusting cot, h, g, and k, yielded
g ) 0. However, as L increases, the parameters
resulting from such a fit change. Results for g and
cut/co, are given in Fig. 3. One sees that g [Fig. 3(a)]
decreases with increasing I, passing smoothly through
zero for L —= L, =1.255. The case /r =g=0 corre-
sponds to a tricritical point at e = 0, and near there Eq.
(4) yields Q

—eti4 for small e. Data for L near L, are
shown in Fig. 2(b). The rapid variation of Q with e
near e =0, corresponding closely to e'i, is noticeable,
particularly by a comparison with Fig. 2(a).

As I. is increased beyond I.„g becomes negative

and Eq. (4) with h =0 predicts that the transition be-
comes first order (the bifurcation is backward). This
phenomenon is illustrated by the data in Fig. 2(c). In
this case, the open circles were obtained with increas-
ing e. For negative e close to zero, Q is already posi-
tive (although small) in the presence of the field h.
Before e = 0 is reached, a discontinuous jump to
p = 0.65 occurs. This is indicated by the upward
pointing arrow in Fig. 2(c). With decreasing e (solid
circles), a hysteresis loop is swept out, and a jump to p
near zero occurs at a significantly negative e as indicat-
ed by the downward pointing arrow in Fig. 2(c). As in
Fig. 2(a), the curves in Figs. 2(b) and 2(c) correspond
to the fits of Eqs. (2) and (4) to the data. The solid
portions of the curves show stable solutions (minima
of F), and the dashed sections show unstable solutions
(maxima of F). The fit to the data is good in all cases.

If h were negligible, the data of Fig. 2(b) would
presumably show hysteresis, since, for L =1.266, g is
negative ( —0.039). Indeed, for h =0 the width eo
[see Fig. 2(c)] of the hysteresis loop given by Eq. (4)
is equal to —g2/4k. The fits, which give it = 8&& 10
near L = L„show no hysteresis, however, for g )
—0.06. In fact the field h has the effect of increasing
the value of L for which hysteresis is first observable
from L, to 1.270.

It is interesting to note that the fits to the data for L
in the range of our experiment yield 5 & 10
& h & 10 3. Thus the field is extremely small (i.e. ,

the experimental apparatus is "nearly perfect"). The
relatively large effect of h upon Q near e = 0 is associ-
ated with the divergent susceptibility at & =0. Indeed,
it is easy to see from Eq. (4) that p(e = 0) —(h/g) i
for positive g and P(e =0) —(it/k)'i for g=0. Thus
Q can become appreciable even for small h. It is clear
that improving the apparatus by, say, an order of mag-
nitude will reduce the "rounding" near e = 0 by only a
factor of 2 or so.

Our results for t0t/t0, are summarized in Fig. 3(b).
They agree quite well with the recent data of Schmidt, s

who used the same radius ratio q=0.5 as ours. The
results for the parameter k [see Eq. (3)] have not been
shown, but their dependence on L, is very similar to
that of cot/co„with k increasing smoothly from 0.15 at
L = 1.20 to 0.33 at L = 1.28.

After this work was completed, we became aware of
calculations of the phase diagram from numerical solu-
tions of the Navier-Stokes equations. " Those results
yield L, = 1.259, only 0.3% larger than our experimen-
tal value. The computed cot(L) differs by less than 1%
from the measured values in Fig. 3 (most of the small
difference could be removed by a shift along the
abscissa so as to cause the results for I,, to agree exact-
ly). Good agreement also exists for the width eo of the
hysteresis loop for L ) L,.

We are grateful to Dr. Ingo Rehberg for calling our

675



VOLUME 54, NUMBER 7 PHYSICAL REVIEW LETTERS 18 FEBRUARY 1985

attention to this interesting hydrodynamic system and
for many helpful discussions. We thank Dr. K. A.
Cliffe for communicating to us his theoretical results
prior to publication. This work was supported by the
National Science Foundation under Grant No.
MEA81-17241 and the Finnish Academy of Sciences.

&See, for instance, J. P. Gollub and H. Freilich, Phys.
Fluids 19, 618 (1976) or J. Wesfreid, Y. Pomeau, M. Du-
bois, C. Normand, and P. Berge, J. Phys. (Paris) 39, 725
(1978), or G. Pfister and I. Rehberg, Phys. Lett. 83A, 19
(1981).

See, for instance, V. Steinberg and H. R. Brand, Phys.
Rev. A 30, 3366 (1984), and references therein.

3L. Landau, Phys. Z. Sowjetunion 11, 26 (1937), reprinted

in Collected Papers of L. D. Landau, edited by D. ter Haar
(Pergamon, London, 1965), p. 193.

4R. B. Griffiths, Phys. Rev. Lett. 24, 715 (1970).
5T. B. Benjamin and T. Mullin, Proc. Roy. Soc. London,

Ser. A 377, 221 (1981).
sK. A. Cliffe, J. Fluid Mech. 135, 219 (1983).
M. Lucke, M. Mihelcic, K. Wingerath, and G. Pfister, J.

Fluid Mech. 140, 343 (1984).
H. Schmidt, thesis, University of Kiel, West Germany,

1983 (unpublished).
The measurements of co, were extrapolated to infinite L

in a manner similar to that used by Pfister and Rehberg
(Ref. 1), and the result for cu, is believed to differ from the
value for infinite L by no more than 0.1%.

OM. A. Dominguez-Lerma, G. Ahlers, and D. S. Cannell,
Phys. Fluids 27, 856 (1984).

»K. A. Cliffe, private communication.

676


