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Critical Dimension of String Theories in Curved Space
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The critical dimension of string theories in which the background metric is a product of Min-
kowski space and an SU(N) or SO(N) group manifold is derived. A consistent string theory can be
constructed only in the presence of a Wess-Zumino term associated with the compactified dimen-
sion. This implies that the compactified radius is quantized in units of the string tension. A gen-
eralization to the supersymmetric case is discussed.
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The quantum theory of a string is very different
from that of a point particle. A consistent theory for a
point particle can be defined in any number of dimen-
sions, whereas studies with string theories show that
the dimension of space-time cannot take any arbitrary
value. In a flat background the bosonic string theory is
known to be a consistent quantum theory only in 26
dimensions. The fermionic string theory of Neveu,
Schwarz, and Ramond2 and the superstrings of Green
and Schwarz3 requires that space-time has ten dimen-
sions.

If string theories are to provide us with renormali-
able (or even finite) theory which unifies all inter-
actions including gravity, it is clearly necessary to
study string theories on manifolds with some of the
dimensions compactified. A Kaluza-Klein —like string
theory4 s may therefore turn out to be important in
reduction of the theory (compatification) down to four
dimensions. With this in mind we have started to
study string theories in a curved background. In this
Letter we present the calculation of the critical dimen-
sion of theories where the background metric is a
product of Minkowski space and the group manifold
SO(N) or SU(N). Our analysis is based on the fact
that in a curved background the string action provides
us with a two-dimensional nonlinear sigma model. An
important feature of a string theory is its reparametri-
zation invariance. In terms of the two-dimensional
field theory this reflects itself as a conformal invari-
ance, 6 i.e., the o.-model field theory must have a zero
p function. A nonlinear o- model we know to have

p = 0 is the one discussed by Witten. 7 In order to have
a conformally invariant theory a Wess-Zumino term
has to be added to the theory. Since m2(SO(N))
= m2(SU(N) ) =0 and m3(SO(N) ) = m3(SU(N)) = Z,
a two-dimensional nonlinear theory which resides on
the group manifold of either SO(N) or SU(N) admits
a Wess-Zumino term. Witten has shown that for a
particular relation between the coupling constant of
the sigma model and the coefficient of the Wess-
Zumino term the sigma model is conformally invari-
ant. In the string theory this relation between the
coupling constant and the coefficient of the Wess-
Zumino term corresponds to a relation between the

is added to the action. Conformal invariance and
hence reparametrization invariance is restored if the
integer coefficient K of the Wess-Zumino term and
the coupling constant 4m. n'/R2 of the sigma model
satisfy the relation7

n'/R'=2/IKI. (6)

This means that the radius of the compactified dimen-
sions gets quantized in units of the string tension.
Furthermore, when K approaches infinity one recovers
the flat-space limit.

string tension and the size of the compact dimensions.
As an example of a string theory with nonflat back-

ground we study a string moving on a product of a
three-dimensional sphere with radius R and the d
dimensional Minkowski space. This case corresponds
to the group manifold of SU(2). Our analysis can easi-
ly be generalized to SO(N) or SU(N). Because of
reparametrization invariance we are free to choose a
gauge. In the orthonormal gauge it is enough to con-
sider only the transverse directions. The string action
for the spherical part can be written as

A = (4mn') '
J d a- d 7 [x —x' + A. (x —R ) ], (1)

where )i is a Lagrange multiplier and n' is related to
the string tension by T= (2m. n') '. In Eq. (1) we
have used the notation

x' = tlxt/tlo-, x '= tixt/t)r.

Rescaling the string position variable x' and defining

g= (xol+ix o.)/J2

where o' are the Pauli matrices, Eq. (1) can be written
in a more compact form as follows:

2 fo

d(r dr Tr[ti, gtl, g t —ti gti g t]. (4)4mn'"

This action is not conformally invariant. Witten7 has
shown that conformal invariance can be restored if a
Wess-Zumino term

K
d y e Tr[g t) g g Qbg g tlcg]

620



VOLUME 54, NUMBER 7 PHYSICAL REVIEW LETTERS 18 FEBRUARY 1985

To analyze the string theory we take advantage of Witten's work on two-dimensional sigma models. The
currents of the sigma model are most easily expressed using light-cone coordinates u = a +7 and v = a- —7. When
Eq. (6) is satisfied the algebra of the currents (with K ) 0)

J+(u) = (iK/7r)g 'B„g, J (v) = —(iK/7r) Q„gg
takes the following very simple form:

[J' (v) J (v')] =2if'~J' (v)5(v v—')+ (iK/m)h'(v —v')5'',

[J~ (u),J+ (u')]=2if' J'+ (u)5(u —u')+ (iK/7r)5'(u —u')5 ~, [J+ (u),J~ (v)] =(). (8)

This light-cone algebra is known as the Kac-Moody
algebra with a central extension. 9 This central term is
the generalization of the well-known Schwinger term
of current algebra. The equal-time version of this
algebra and its relation to the light-cone algebra has
been . discussed by smitten and by Bars. ' The Kac-
Moody algebra has well-behaved unitary representa-
tion if K is an integer as in the case of the Wess-
Zumino term. Furthermore, the irreducible represen-
tations of the Kac-Moody algebra are conformally in-
variant.

The generators L„of the conformal transformation
satisfy a Virasoro type of algebra

[Ln, L~ ] = ( n —m) L„+—,', c ( n —n) 5n, (9)
where m and n range over the integers and c is a real
number, the central element of the algebra. The cen-
tral charge is intimately connected with the trace
anomaly of the energy-momentum tensor in a back-
ground gravitational field. This algebra was exten-
sively studied. In particular, Friedan, Qiu, and Shenk-
er" have studied the critical behavior of two-
dimensional theories by characterizing the allowed
(under certain conditions) values of c. In a very re-
cent report, Goddard and Olive used a group theoreti-
cal method for constructing new unitary representa-
tions of the Virasoro algebra.

For our case, the coefficient c in Eq. (9) can be
determined from the current algebra of Eq. (8). The
value of c obtained is in agreement with the more gen-
eral characterization given by Goddard and Olive. '2

The Fourier components of the energy-momentum
tensor represents the generators of reparametrization
(conformal) invariance and they generate the Virasoro
algebra (9). Hence, to determine the Virasoro algebra
we need the commutation relations of the energy-
momentum tensor. These commutation relations can
be calculated from the current algebra (8) since our
theory is a Sugawara type of theory with a current-
current interaction. The energy-momentum tensor
can be expressed in terms of the o.-model currents of
Eq. (7)"as

Boo~ Tr[J~2 (u)+ J2 (v)],
e„Tr[J (u) —J (v)].2 2 (10)

t the 5'" Schwinger term of the commutation relation of
the energy-momentum tensor. When we take the
Fourier transform, 5'" will give rise to the n3 term in
the Virasoro algebra. We do not expect to get the —n
part of the central charge from the Schwinger term
since it arises from the normal ordering of Lo. How-
ever, 5"' is enough to determine the central charge.
To calculate the 5"' Schwinger term we need to normal
order the energy-momentum tensor. '4 This is a well-
defined procedure since at the particular point of Eq.
(6) our currents are free. The currents J+(u) and
J (v) can, therefore, be divided into positive- and
negative-frequency parts:

a ( ) X [aae —inu + a aeinu]
27T 1

J' (v) =
&/2

X [b' '""+b 'e'""].
27T =1

e, (u) =W-':[J, (u)]':,
(v)=& '[J (v)]' (13)

The normalization constants 3 and B arise because of
normal ordering. Note that 0+ is only a function of u
and 0 of v, respectively. The integrals of these den-
sities generate translations in u and v directions,
respectively. The normalization constants A and 8 in
Eq. (13) can be determined from the commutation re-
lation

[:J,' (u):,J', (u')]

The operators a and b satisfy the following commuta-
tion relations:

[a„',a~] = (i/JKf'+a„'+. + n5„~ O5'~

[b:b~] = (&/~&)f' bn+m+ n~n+mo~",
with a„=a „. All the other commutation relations
vanish. The commutation relations (12) follow im-
mediately from the current algebra (8). To calculate
the commutation relation of the energy-momentum
tensor it is useful to define

The central charge in Eq. (9) can be determined from = (2i /7r ) (K + 2) h' (u —u' )J~+ (u) . (14)
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From Eqs. (13) and (14) it immediately follows that
{a)

J 8 ~ ( u') du', J+ ( u) = tl „Ji( u), (b)

A = [n/2(K. +2)]
Simtlarly, one can determine Bwith the result

(16)

FIG. l. (a) The leading order (K ~) contribution to
the trace anomaly in external gravitational field. (b) The
next-to-leading [O(l/K) ] contribution to the trace anomaly
in external gravitational field. The black dot represents a
vertex coming from the Wess-Zumino term.

Normal ordering in 6+ was essential for getting the
correct normalization constants. For the Virasoro algebra we need

[ J~ (u)'. , :J~ (u') 2:]= 2i [J+ (u),J+ (u') ]5'(u —u') —(i /67r ) [3K/(K + 2) ]5"'(u —u') (17)

d) e'"'[e () )]' (IS)

After a straightforward algebra we find that the L„'s
satisfy

The normal ordering of the currents was again essen-
tial for getting the correct 5"' Schwinger term. The
Virasoro algebra can now be easily determined. We
define

where D is related to the critical dimension d, by
r

(N' —1)K for SU(N),W+L
—,
' N(N —1)K

for SO(N).
(23)

[L„,L.]

= (n —m)L~+„+ —,', [K/(K + 2) ]n35„. (19)

Formula (19), is only valid for K ) 0 [recall that in
the definition of the current in Eq. (9) we restricted
ourselves to positive K]. Howver, our analysis can be
easily extended to negative K. The current algebra of
Eq. (8) will remain the same with K replaced by IK I.
Therefore the central charge of the Virasoro algebra
for both positive and negative K can be written as

c = 3 1K I/( IK I
+ 2). (20)

Note that c is not proportional to K, i.e. , it is not the
value one would naively expect for a free fermionic
theory. As we already remarked K ~ corresponds
to the flat-space limit. In this limit we indeed recover
the result of flat-space dimensions with c= 3. From
Eq. (20) we can also determine the critical dimension
for the flat Minkowski space:

d, +3IKI/(IKI+2) =26. (21)

[I.„,I. ]=(n m)r„, + —,', Dn'S—„ (22)

Note that the formula is symmetric under K —K.
Equation (21) tells us that by compactifying part of the
transverse dimensions we can reduce the critical
dimesionality of the flat Minkowski space. For K=1
the critical dimension is 25 and for K =4 is 24. This
formula can be easily generalized to arbitrary SO(N)
or SU(N). The Virasoro algebra for these group mani-
folds has the form

Both formulas can be written in terms of the dimen-
sion dG and rank r of the group

dGL
for SU(N),r+1+ K'

dGE
for SO(N),L+2r —2+5 '

where 5= —,
' [1—( —1) ]. Note that while the isome-

try group is SU(N) S SU(N) [or O(N) S O(N)], dG

actually refers to the dimension of the manifold.
Although the critical dimension d, of the Minkowski
space is reduced down from 26, the total dimension,
i.e. , d, + dG, is larger than 26. This can be verified im-
mediately from Eq. (24) since the factor multiplying
dz is smaller than 1.

The critical dimension of the string theory can also
be calculated with use of Polyakov's method. 6 As we
already mentioned, the central charge of the Virasoro
algebra is related to the trace anomaly of the energy-
momentum tensor. Our computation gives the coeffi-
cient of the trace anomaly in the external gravitational
field for the compactified dimensions. Combining this
with the free-field conformal anomaly associated with
the flat dimensions as calculated by Polyakov gives
the full-trace anomaly for the produce space Md
x m(SU(N) or SO(N)). Calculating the trace anoma-
ly is equivalent to calculating the effective action in an
external background gravitational field. The effective
action can be calculated with use of Feynman graphs.
In Fig. 1 we have shown the two leading orders in the
large-K expansion. Figure 1(a) is of order 1 whereas
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1(b) is of order I/~K~. Note that 1(b) does not
depend on the sign of K. The three-point coupling in
Fig. 1(b) comes from the Wess-Zumino term, whereas
the four-point coupling comes from the sigma model.
Figure 1(a) corresponds to the leading order of the ex-
pansion of the central charge (20) c = 3(1—2/K)
+ O(1/K2) and Fig. 1(b) to the 1/K part. From the
graphical approach, it is clear that for any manifold
G/0 the coefficient c will be proportional to the
number of Goldstone bosons, i.e. , to the dimension of
the manifold.

In the large-E limit one may try to find a semi-
classical approach to solving the present theory.
Furthermore, the large-E limit may provide a way to
regularize the limiting flat theory at the critical point.

Our analysis can be extended to the Neveu-
Schwarz-Ramond model. 2 The supersymmetric gen-
eralization of the two-dimensional Wess-Zumino term
has been constructed by Rohm's and by Curtwright
and Zachos. ' From the analysis of Ref. 15 it follows
that at the critical point the fermions remain free. It
seems, therefore, that the fermions will provide the
usual reduction of the critical dimension from 26 down
to 10, while the Wess-Zumino term will work just as in
the bosonic string. We therefore expect the critical
dimensions to be determined by

d, =D=10, (25)

where D is given in Eq. (24).
The reduction down from ten dimensions raises the

question of the realization of supersymmetry. '7 To
analyze this point carefully one would like to have the
spectrum of the theory. One should note that the
supersymmetric discussed here is the two dimensional
one associated with the fermionic string of Ref. 2. An
important problem which we have just started to inves-
tigate is the possible construction of a model with a
space-time supersymmetry corresponding to the new
string theory of Green and Schwarz. '

The theories discussed in this Letter provide us with
a new class of string theories. It would be extremely
interesting to construct the representation of the
Virasoro algebra associated with these theories"'2'
and to construct the vertex function. We hope to re-
port on progress in these directions in the near future.

While finishing this paper we received a new report
on the very interesting work of Friedan, Qiu, and
Shenker, ' generalizing their previous work" to the
supersymmetric case. We have also learned' that the
whole program of compactification of string theories
has been extensively studied by D. Friedan, Z. Qiu,
and S. Shenker. As part of their work they have also
derived the critical dimensions.

We would like to thank M. Peskin for many helpful
discussions and comments. We also thank A. Dahr for
useful discussions. This work was supported by the
Department of Energy under Contract No. DE-AC03-
76SF00515.

~'&On leave from the Physics Department, Tel-Aviv
University, Ramat Aviv, Tel Aviv, Israel.

~For a review of "string theory, " see Dual Theory, edited
by M. Jacob, Physics Reports Reprints Book Series, Vol. 1

(North-Holland, Amsterdam, 1974) .
2A. Neveu and J. H. Schwarz, Nucl. Phys. B31, 86 (1971);

Phys. Rev. D 4, 1109 (1971); P. Ramond, Phys. Rev. D 3,
2415 (1971).

3M. B. Green, and J. Schwarz, California Institute of
Technology Reports No. CALT-68-1182 and CALT-58-1194
(unpublished) .

4C. Lovelace, Phys. Lett. 135B, 75 (1984).
5P. G. O. Freund, to be published.
6A. M. Polyakov, Phys. Lett. 103B, 207 (1981);J. L. Ger-

vais and B. Sakita, Nucl. Phys. B34, 477 (1971). The con-
nection between the central charge and the trace anomaly
was first noted by D. Friedan [Recent Advances in Field
Theory and Statistical Mechanics, edited by J. Zuber and
R. Stora, Les Houches Summer School Proceedings Vol. 39
(North- Holland, Amsterdam, 1984)] .

7E. Witten, Commun. Math. Phys. 92, 455 (1984).
A. Hanson, T. Regge, and C. Teitelboim, Constrained

Hamiltonian Systems, (Academia Nazionale dei Lincei Roma,
Rome, 1976). See also Ref. 1 and references therein.

9I. Frenkel and V. G. Kac, Inv. Math. 62, 23 (1980);
G. Segal, Commun. Math. Phys. 80, 301 (1981).

~01. Bars, in Vertex Operators in Mathematics and Physics,
edited by J. Lepowskiy (Springer-Verlag, New York, 1985).

ttD. Friedan, Z. Qiu, and S. H. Shenker, in Vertex Opera
tors in Mathematics and Physics, edited by J. Lepowsky
(Springer-Verlag, New York, 1985), and Phys. Rev. Lett.
52, 1575 (1984).

2P. Goddard and D. Olive, Cambridge University Report
No. DAMPT 84/16, 1984 (to be published).

~3The energy-momentum tensor is normalized properly in
Eq. (13) to give the correct equation of motion for the
currents.

4R. Dashen and Y. Frishman, Phys. Rev. D 11, 1781
(1975). The calculation of the 8"' Schwinger term is done
by essentially following their calculation for our case.

~5R. Rohm, "Anomalous Interactions for the Super-
symmetric Nonlinear Sigma-Model in Two Dimensions" (to
be published) .

~6T. Curtwright and C. Zachos, to be published.
~7We thank R. Rohm for discussion on this point.
tsD. Friedan, Z. Qiu, and S. Shenker, Chicago University

Report No. EFI 84-35, 1984 (to be published).
S. Shenker and D. Friedan, private communication. We

thank S. Shenker and D. Friedan for discussing with us his
results prior to publication.

623


