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Accelerated Diffusion in Josephson Junctions and Related Chaotic Systems
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(Received 29 October 1984)

We report a new type of anomalous diffusion in chaotic systems with periodic symmetry. It is
characterized by mean square displacements diverging faster than linearly in time. By a comparison
of power spectra we conclude that the phenomenon has occurred in a recent observation of 1/f
noise in Josephson junctions.

PACS numbers: 05.45.+b, 66.30.—h, 74.50.+r

When a particle diffuses, its mean square displace-
ment usually grows linearly in time (for t ~). De-
viations from this linear growth, known as anomalous
diffusion, were found in amorphous solids, superionic
conductors, polymer melts, and other systems and
have stimulated the theoretical work. s Anomalous dif-
fusion was also predicted to show up in certain chaotic
systems. It is well known by now that resistively
shunted Josephson junctions behave chaotically if they
are driven by a periodic current. This is also the case
for dc biased junctions, if the shunt includes a substan-
tial self-inductance. s Recently Miracky, Devoret, and
Clarke (MDC) have reported the observation of I/f'
noise in the voltage power spectrum of such a junc-
tion (Josephson analog). We will argue below that
this observation is associated with a new type of
anomalous diffusion in chaotic systems: While in all
above cases' 5 including the chaotic systems of Ref. 6
the mean square displacement o. (t) grows slower than
linearly (i.e., like t with n ( 1), here it grows faster
than linearly (n ) 1). Diffusion thus is not inhibited
but accelerated as compared with normal diffusion
(n = 1).'0 The diffusion coefficient D = lim[a 2(t)/2t]
does not vanish as in Ref. 6 but diverges. We describe
the theory in some generality and later discuss its ap-
plication to Josephson junctions. Depending on a
universality exponent z the mean square displacement
generally grows like t3 '/(' '), like t', or like tint.
For comparison with experiments we also determine
the corresponding power spectra.

We consider a class of systems having discrete
translational symmetry like, e.g. , a driven damped par-
ticle in a periodic potential V(x) = V(x+ n). The
periodicity defines unit cells of length 1 along the x
axis; diffusion may arise as a random motion from cell
to cell. This example is an analog for the phase
dynamics of resistively shunted Josephson junctions
(where x stands for the phase @) and for a pheno-
menological model of weakly pinned charge-density
waves. " For sufficient damping the chaotic dynamics
of these systems can be approximately described by
circle maps 12 t5

x, ~) =f(x ), f(x+ n) = f(x) + n,

where the second equation expresses discrete transla-

tional symmetry and f is a map whose actual form
depends on the particular physical problem and its
parameters. We require that it has at least one max-
imum per unit cell and for convenience assume reflec-
tion symmetry'6:

f( —x) = —f(x). (2)
An example is depicted in Fig; 1(a). Maps of this type
can explain a number of phenomena reported for
Josephson junctions. '7'8

The systems described by Eqs. (1) and (2) exhibit
chaotic motions in the form of diffusion (phase dif-
fusion for Josephson junctions). '2 '~ In the situations
studied so far, diffusion was associated with no
anomalous spectra' ' ' or with spectra increasing
like tot' (with P )Q). Here we present a general
mechanism, which can cause an accelerated diffusion
process and is associated with 1/f spectra: Variations
in the physical parameters of a system cause variations
in the shape of the corresponding map. If thereby the
map exhibits intermittency2o ' in two transfer regions
(i.e. , where transfers to neighboring cells take place),
the following theory [Eqs. (4) —(11)] applies. For the
sake of clarity we illustrate our ideas in a particular ex-
ample, Fig. 1. When the maximum of a map (or of its

(a)

Xt.

I y-1~
FIG. 1. (a) Example of a map satisfying Eqs. (1)—(3)

shown for a unit cell 0~x, ~ l. Solid circles are contact
points with the lines +1+x, . (b) A suitable change of
parameters may cause the contact points to move to the cell
boundary.
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iterates) moves up or down, it can become tangent to the (dashed) line x, +, ——1+x, in Fig. 1(a). This situation
was frequently encountered with Josephson junctions. ' ' One can now imagine a variation where the contact
points move to the cell boundaries as in Fig. 1(b). In their vicinity (x = m) the map then is of the form

f (x) = (I+a)(x —m ) +a (x —m )'+m —1 (m & x & m + ' ) (3)

where x —m « 1 and e 0. As usual for intermit-

tent systemsz'23 we allow for a general exponent z & 1

distinguishing universality classes; z = 2 is the generic
case. In order to avoid problems associated with the
lack of an invariant measure (for z ~ 2) we have in-
troduced the parameter e and let e 0. Aside from
the limiting form Eq. (3) and the symmetry conditions

Eqs. (1) and (2), the map need not be specified. We
only require a smooth injection probability to the vi-

cinity of x = m.

i

When an orbit x, reaches the vicinity of a point
x = m, according to Fig. 1(b) and Eq. (3) it is
transferred to an almost equivalent position in the
neighboring cell. This transfer is repeated successive-
ly, resulting in a laminar motion of correlated jumps
over many cells. We will give a brief outline of our
theory; more details will be presented elsewhere. 24

Let T denote the duration of laminar phases. Its prob-
ability density Q(T) can be calculated in a continuous-
time approximation for intermittent systems, '
which here yields

Q( T) 2a —vpv+ 1 [(I+2z —
1&/a ) ee(z —1)7 I] v+ 2al vz&vz[(1+ 2z 1&/a ) ee(z —1) T

1 ]
—vz (4)

where v = 1/(z —1). The velocity autocorrelation function C(t) = (vow, ) can be obtained with the help of renewal
theory25 or by phase-space averages,

C(t) = „t (T t)y(T) d—T. (5)

Depending on the exponent z we had to use different routes for the following calculations. For z& 2 (and e = 0 for
z & 2) the Laplace transform Q(s) of P(T) exists and Eq. (5) can be written in Laplace transform,

C(s)=s '+(T) 's '[P(s) —1]. (6)

The mean square displacement o. (t) = ((x,—xo)2) follows from Eq. (6) as

o-2(t) = L 'I2s 3+2[ lim dQ/ds'] 's [1—Q(s)]],
s ~0

where L denotes the inverse Laplace transform. For z = 2 we had to calculate the correlation function explicitly
by integrating Eq. (5):

C(t) = —[ln(1+ a/2e) ] ' in[1 —ae "/(a+ 2e) ],
which in the limit e 0 and s/e » 1 yields

C(s) = [ln(a/2e) ] '[ys '+ s ' ln(s/e) ], (9)

z~2,
t3 —1/(z —1) ', &z&2, —

~'(t)—
tint, z= —', ,

1& z & —,'.
(10)

We illustrate these results by a computer simulation in
Fig. 2, where a.2(t) has been determined by averaging

where y is Euler's constant. From Eqs. (4) and (7) or
Eq. (9) we have calculated the mean square displace-
ments in the long-time limit, 24 making use of Tauberi-
an theorems and of Karamata's theorem. For e 0
and with the ommision of nonuniversal prefactors they
are

over 2000 orbits of maps belonging to Eqs. (1)—(3).
For z & —,

' the asymptotic growth t is anomalous with
exponents n & 1. Diffusion is thus enhanced as com-
pared with normal diffusion (t ). For z ~ 2 it attains
the strongest possible power law t2. This should not
be misinterpreted as a steady drift motion [where
(x, —xo)2=u2t2]. The process is indeed a random
walk with characteristic power spectra (see below) dis-
tinguishing it from other random walks. As a conse-
quence of the enhancement of diffusion (a & 1) the
diffusion coefficient D =lim[cr (t)/2t] (for t ~)
diverges, whereas in other cases of anomalous dif-
fusion' it vanishes.

In experiments the above phenomenon will manifest
itself through its power spectra. Although they are not
meant to be the main message of this paper, below we
give the velocity power spectra to allow comparison
with experiment. They follow as the Fourier trans-
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FIG. 2. Computer simulation illustrating the anomalous
asymptotic growth of the mean square displacement Eq. (10)
in a log-log plot. Theoretically predicted slopes are indicated
by straight lines. The anomalous growth (for z ~ ~) is ac-

celerated as compared with normal diffusion (z = T).

FIG. 3. Velocity power spectrum S(cu) exhibiting 1/f
noise in a computer simulation for z = 2 and z = 3. Straight
lines indicate the analytic result Eq. (11). In a Josephson
experiment this spectrum is the voltage power spectrum.

forms of Eqs. (5) and (8), i.e. , S(tu) = 2 ReC(5 —i')
with 5 0. Omitting nonuniversal prefactors we ob-
tain

/In~ f, z = —', ,

const, 1 & z & —', .

Here we had to consider the regime e (& cu (& m. , i.e.,
ro/e » 1. Note that this is the only means to arrive
properly at the 1/f noise in the cases z ~ 2, where the
tu " behavior (with y~1) cannot extend to tu=0.
The divergence of the integral flu ~ des would other-
wise be incompatible with a well-behaved correlation
function C(t=0). For —,

' ( z & 2 the decay is still

like co ~, but with y & 1. Figure 3 illustrates the 1/f
noise by a computer simulation for two maps satisfying
Eqs. (1)-(3). Note that the spectra for z~ 2 are
markedly different from those of other intermittent
systems. '9

We finally discuss the application of the theory to
Josephson junctions and MDC's observation. It can-
not explain other observations of 1/f'noise in Joseph-

son junctions. By adding external noise MDC could
show that their 1/f noise was a deterministic (i.e.,
chaotic) phenomenon occurring for a special choice of
parameters. They were led to study an idealized uol-

tage return map, which does not shed light on dif-
fusive motions. By consideration of the phase @ in-
stead of the uoltage as dynamical variable, their obser-
vation appears as a manifestation of accelerated dif-
fusion (of the phase): Its velocity u=@= U2e/t is
proportional to the voltage U across the junction.
Generally there is a close connection [used in Eq. (7)]
between mean square displacements and velocity
power spectra. The observation9 of cu

~ noise in the
voltage (i.e., velocity) power spectrum thus is connect-
ed with anomalous mean square displacements of the
phase @. We have presented a general mechanism
causing such anomalous deterministic diffusion. Since
for z= 2 it yields the observed spectral shape (pure
cu ') we believe it was operative, although details may
be more complex (the actual width of the co

' regime
depends on e). The junction's highly nonlinear equa-
tion of motion prevents an analytic derivation of our
model. For symmetry reasons the map must be a per-
turbed circle map, Eqs. (1) and (2).~2 's A limiting
form like Eq. (3) may be sought in analog computer
simulations.
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