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Comments on ‘‘General Theory for Quantum
Statistics in Two Dimensions”’

In a recent Letter! Wu provides, among other
results, a derivation of exotic quantum statistics in
two-dimensional space using Feynman path integrals,
extending an argument given by Laidlaw and De Witt?
for the three-dimensional case. The existence of such
statistics and their physical interpretation in terms of
local observables was previously obtained from the
standpoint of group representations.”> However, from
this standpoint more general quantum theories than
those in Ref. 1 are recognized to occur. Within a sin-
gle framework, one obtains in addition the theories of
particles obeying parastatistics, as well as particles with
spin.*3 The description of these theories requires ex-
tension of the conventional path-integral formalism.

It has been shown® that quantum mechanics in R®
can be described by unitary representations of
Diff (R*®), the group of diffeomorphisms of R* which
become trivial at infinity. Quantum statistics arises
from certain induced representations of this group.
Diff(R*) acts in a natural way on n-particle configura-
tion space A, whose fundamental group =;(A) is the
braid group B, for s =2 and the symmetric group S,
for s > 2. Then 7;(A) serves as a gauge group for the
theory, and its unitary representations induce
representations of Diff (R*) describing the various par-
ticles statistics.

Wu states that ‘‘all possible quantum statistics in
two-space are characterized by an angle parameter 6
which interpolates between bosons and fermions.”
This assertion presupposes representations of the braid
group which are one dimensional. There are, howev-
er, quantum theories obtained as representations of
Diff(R*®) induced by higher-dimensional representa-
tions of 1 (A), corresponding to parastatistics (for S, )
or ‘‘unusual parastatistics’’ (for B,). It does not seem
widely recognized’ that parastatistics® can also be
described by Feynman path integrals on configuration
space, taking the wave function ¢y to be vector valued
rather than scalar valued, and the propagator K to
be an operator-valued function. Then the ‘‘weights”’
X(a) in Ref. 1, Eq. (1), for « €B, or a €S,, can
be unitary operators instead of phases, while
Jexp(iS)D g remains a scalar quantity.

It should also be noted that even systems of distin-
guishable particles can be described by quantum
theories with unusual phase shifts in two-dimensional
space, because the coordinate space ((xy,...,
xy)|x; € R% x;#x; for i/} is not simply connected.’
A possible example is that of quantized disturbances
such as vortices in a thin film. Now different phase
shifts can occur when different pairs of vortices circle
each other by means of continuous paths in coordinate
space. These phase shifts may be related to the rela-
tive vorticities. Thus it is not really the indistinguisha-

bility of the particles which accounts for the oc-
currence of unusual statistics in R% but the two-
dimensionality of the space.

Quantum theories of particles with spin are also ob-
tained as induced representations of Diff(R?) or
Diff(R3). In one-particle configuration space, the
gauge groups are the universal covering groups of the
Lie groups SL(2,R) or SL(3,R) respectively.” Unitary
representations of these groups can be decomposed
with respect to the covering groups of SO(2) or SO(3).
Now it is essential to consider the higher-dimensional
representations in carrying out the inducing construc-
tion. In three dimensions, we obtain quantum the-
ories of supermultiplets of particles with integer or
half-integer spin, and in two dimensions particles with
fractional spin, strictly from the representation theory
of the diffeomorphism group. To express these sys-
tems in terms of path integrals, it appears necessary to
enlarge the configuration space.!®
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