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Cascade of Metal-Insulator Transitions for Electrons
in the Frenkel-Kontorova Chain
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Novel behavior of the one-dimensional incommensurate Schrodinger equation when the poten-
tial is derived from a Kolmogorov-Arnol d-Moser torus is found by exploitation of univeral scaling
properties. Our numerical investigation reveals in particular that nearly torus-breaking electronic
states undergo series of back-and-forth localization transitions in sensitive dependence on the po-
tential strength.

FACS numbers: 71.55.Jv, 03.20.+i, 71.30.+h

Incommensurate systems may be conceived as being
generated from higher-dimensional commensurate
ones by restriction of the degrees of freedom. ' The
resulting "hybrid" translational symmetry no longer
guarantees wave propagation of elementary excitations
by constructive interference. As a consequence, local-
ization lengths and transport properties depend sensi-
tively on various system parameters as well as on the
algebraic character of the discommensuration.

Recent work exploring this field has concentrated on
the continuous one-dimensional (1D) quasiperiodic
(qp) Schrodinger equation

( —d'/dx'+ Z I'(x,x/~) 1e (x) = Ee (x)

and its tight-binding version or Poincare map

W„+ t + A. v (n/a)%"„+. V„&= EW„. (2)

Here V and v are 1-periodic in their arguments, o- is ir-
rational, and X controls the strength of the potential.
Equations (1) and and (2) constitute the most simple
realizations of the incommensurate quantum dynam-
ics, yet model a number of interesting physical situa-
tions such as 2D Bloch electrons in irrational magnetic
fields. 4

One prominent feature of the now widely accepted
picture of this subject is the Aubry-Andre transition
(AAT). 5 Given, for example, some analytic v in (2),
there is a critical amplitude P„either common to all
electronic states or varying with the states considered
(if mobility edges exist ): The states are extended
below their P, and exponentially localized above; pre-
cisely at A., they are exotic (self-similar with respect to
dilation). 8 Associated with the latter case is a
singular-continuous component in the spectrum (see
Ref. 2 for a clear account). Another interesting find-
ing is that for certain classes of discontinuous poten-
tials in (2) all states are critical, described by
dependent nonuniversal scale factors.

These and much more information on qp
Schrodinger operators have been extracted from very
special systems, often tailored ingeniously for solvabil-
ity. Thus the results may be atypical or, at least, in-
complete. By way of contrast we have studied a model

X (x, + )
—x„)' + A [I —cos(2m-x„) ]

nCZ

under the boundary condition

lim (xL —x, )/(I. —l. ') = a-.

L '~ —oo

Such a configuration is described by

x„=na+n+g(na +n),

(4)

(5)
with an arbitrary phase o. and a 1-periodic strongly A-
dependent hull function g.' Given a generic o., g is an-
alytic for 0 ( A ( A, (a-) and discontinuous for
A ) A, ( a-) . 'O' " In dynamical-system language the
ground states (5) correspond to recurrent trajectories
of the standard map' lying on the Kolmogorov-
Arnol'd-Moser torus with classical rotation number &-

when A is small enough. At A, (a-) this torus breaks
to a Cantorus. '

Altogether, 0 is a qp operator specified by the
parameters cr, o. , A, and X and possessing two incom
mensurate characteristic lengths 1 and a-. '" It may
serve as a simple model Hamiltonian to describe the
electronic properties of a quasi-1D metal below the
Peierls transition. ' The Schrodinger equation

which is characterized by a highly nontrivial qp poten-
tial, has a direct physical interpretation, and connects
various qualitatively different situations through con-
tinuous change of parameters. Extensive numerical
work reveals unexpected intricate phase diagrams ex-
hibiting a cascade of AAT's and possibly suggesting a
new "road to localization. "

We consider the generalized Kronig-Penney Hamil-
tonian

H = —d /dx + A. g 5 (x —x„),
nCZ

with k ) 0 and 0 (M~ ~ (x„+~—x„)~ M2 for all n.
We choose configurations (x„) representing a--

incommensurate ground states of the Frenkel-
Kontorova model. ' That is, (x„) minimizes, in a
well defined way, the functional

@((x„))
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0 (~r, o.', A, &)'P = k 'P can be solved numerically and
various interesting questions may be addressed. Here
we focus on o- and n fixed and ask how the nature of
the eigenstates of H changes as the underlying
Kolmogorov-Arnol'd-Moser torus evolves towards cri-
ticality.

For convenience the notorious golden torus is
chosen, i.e., o. = —,

' (&5—1) =a-G, and n=0. In our
units A (crG) = 0.4922. . . . ' a-G is optimally approxi-
mated by rationals criv = F~ &/F~, where F~ is the Nth
Fibonacci number. The corresponding commensurate
approximants Kiv(k) to the quantum rotation number
~(k) ' will provide us with all the information we
need to construct phase diagrams. K is a continuous
monotonic increasing function of k. Its points of
growth are the spectral values of 0, while its plateaus
occurring at

~„=m(r +s/a-G) ~ 0, r, s C Z

represent the gaps. K allows one to identify individual
parts of the spectrum.

K~ is found by familiar techniques. The appropriate
minimizing periodic orbit of length F~ in the standard
map is determined by searching symmetry lines'
and the transfer matrix Miv(A, A. ;k) for transporting
an electron through the corresponding array of 5 po-
tentials is constructed. From TrM&(A, A. ;k), Kiv(k)
is obtained directly. K~+~, in general, contains all the
gaps of K plus additional ones opening in the bands
of K~. From the way the new gaps decrease with
growing X locally the nature of the eigenstates of H
can be deduced (see also below).

For subcritical A and small X there seem to be infin-

i".{k) R2 {k)

itely many mobility edges in contrast to exquisite
models such as Harper's equation. 5 So, to get a clear
picture, we have to work with fixed rotation number K,
i.e., treat each part of the spectrum separately. For
computational reasons we concentrate on states at ma-
jor gap edges labeled as K,-+, with r and s small.

0 & A & A, (o-G).—When, for fixed small A, X is
increased, the states adjacent to the gap edge con-
sidered undergo a single AAT at X, (A). A powerful
criterion to determine this phase boundary is a scaling
property of AAT which we found to be universal for
a-6-incommensurate models: At X, the functions
K~(k), when properly normalized, for large N ioca/ly
assume one of the two archetypal forms 2,'(k) and
k, (k), shown in Fig. 1. These invariant band struc-
tures alternate with N according to a pattern (e.g. , 112
112. . .) which depends on ~,+-, but not on A. We de-
fine

1,
= k 0

FIG. 1. The universal dispersions K+ and K. Three
bands and two gaps adjacent to a fixed major gap edge are
taken into account and normalization to the unit square is
chosen.

Riv(A, X) = [k (A A. ) —k (A X)]/[k (A X) —kt (A, A. )],
where k;t ~(A, X) is the ith zero of ~TrM&(A, A. ;
k) —2~ as counted (inclusively) from the major gap
edge in the Wth approximation. Then K,' and K are
typified by Riv(A, A., ) =7.83. . . and 1.37. . . . The
universality of K

' and K was checked in various, quite
different models': 5-pulse trains [see Eq. (3)], where
the x„are simply sine modulated or are generated
from the dissipative standard map; corresponding
square-well arrays; tight-binding models such as
Harper's equation, etc. As a practical consequence, an
AAT is easily detected in o-6-incommensurate systems
by determining for suitable W the P where R& and

Riv+ &
are both in the set [7.83. . . , 1.37. . . }.

Returning to our model we now discuss as an exam-
ple the case Ko 0, which poses the least numerical prob-
lems. X, first decreases with growing A but eventually
a minimum is reached. Then the situation drastically
changes: Instead of a single AAT an (possible infin-
ite) alternating series of metal-insulator and insulator-

L metal transitions appears, i.e., the phase boundary
A., (A) becomes multiple valued! The global A-X
phase diagram for states at Ko 0 gives a clear view of
what happens (Fig. 2). Large channels, where states
are extended, open in the localized regime, but in each
channel peninsulas, where states are localized again,
protrude and this process seems to continue ad infini
turn as A goes to A, . This is reminiscent of Cantor set
construction: The phase diagram has self-similar
structure (see inset in Fig. 2) and there is strong evi-
dence that the surviving channels have total measure
zero at A, . Different phase boundaries in Fig. 2 are
characterized by different sequential patterns (line I:
112 112. . . , line II: 222. . . , for example). We em-
phasize that quantitatively the phase diagrams for oth-
er K,—, deviate, in part considerably, from the one for

Our data indicate, however, that the qualitative
nature is the same, though the cascade generally has to



VOLUME 54, NUMBER 6 PHYSICAL REVIEW LETTERS 11 FEBRUARY 1985

,
200- () X 77

75
(b)

70

50-
65

unfold in an extremely narrow A interval adjacent to
A, . Things have been checked with the actual wave
functions; these are perfectly self-similar and thus
algebraically localized at A., (A ).'7

A = A, (o-G).—Our system should be capable of cri-
ticality in at least a second way caused by the torus
breaking at A, (a.G), where the Fourier components of
g decay roughly as cu '. ' A crucial question is wheth-
er the envelope of localized peninsulas in the phase di-
agram for a given gap edge K, -+, (see Fig. 2) hits the
analyticity edge A = A, at a finite value A., (K,-+, ): Then
on the interval (0 & ) & A.„; A = A, ) monocritical
behavior different from AAT can be expected and
complex multicritical behavior near the limit point
(A„X,). Examination of the analyticity edge for fixed
K by small to intermediate commensurate approxi-
mants (N & 15) indeed suggests finite A., (~„-,): For
small A. , states seem to be exotic and corresponding
scale factors vary continuously with A, similar to the
models studied in Refs. 7 and 9. Unlike there these
factors are also strong K,+-, dependent. '

These observations do not stabilize, however, when
N is further increased: The behavior described appears
to be transient and may persist in the incommensurate
limit only for A. 0. On the basis also of our data for
A ( A, we conjecture that the envelope bends down
(probably with infinite slope) to X = 0 at A„enclosing,
together with the analyticity edge, an extremely fine
structure of localized and extended domains. Then a
possible scenario for the extinction of conductivity in a

physical system like ours is "Cantorization" of the A-

A. phase plane with the consequence that almost every
electronic state eventually lands on a localized penin-
sula as A approaches A, . In any case not one of the
states investigated remains extended at A, for any ~:
Thus the analyticity edge is a global boundary for usual
conduction mechanisms.

One general conclusion from our results is that the
behavior of qp models changes even qualitatively
when higher harmonics in the potential become signi-
ficant. So the conductivity for realistic systems, where
very-low-order truncation of the Fourier expansion is

60
001 0.02 0.03 0.00 A(- 0.037 0.038 0039 0040

= A = A

FIG. 2. (a) Phase diagram for Ko 0. (b) Inset magnified,
revealing the cascade structure.

unjustified, will be quite difficult to predict. ' On the
other hand, the universality of the critical phenomena
involved is remarkable, in particular the role of 2 and

Deeper analysis of this has to rely on a renormali-
zation scheme, probably along the lines of Ref. 8, act-
ing on a parameter space which contains all the models
(of given discommensuration o-) derived from analytic
potentials. The models are represented by X trajec-
tories (all other external parameters fixed) in this
space, intersecting the critical surface for AAT at ),.
Within this picture our system has trajectories oscillat-
ing through this surface with a "wavelength" ap-
proaching zero as A A, .
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