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Collective-Excitation Gap in the Fractional Quantum Hall Effect
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We present a theory of the collective excitation spectrum in the fractional quantum Hall-effect
regimes, in analogy with Feynman s theory for helium. The spectrum is in excellent quantitative
agreement with the numerical results of Haldane. Within this approximation we prove that a finite
gap is generic to any liquid state in the extreme quantum limit and that in this single-mode approxi-
mation gapless excitations can arise only as Goldstone modes for ground states with broken transla-
tion symmetry.
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where pk—= X exp(ik rj). In this single-mode ap-
proximation (SMA) the excitation energy is

&(k) =f'(k)/s(k), (3)

The fractional quantum Hall effect' (FQHE) is one
of the most remarkable many-body phenomena
discovered in recent years. Associated with the quanti-
zation of the Hall resistance is a nearly complete free-
dom from dissipation. The latter suggests the ex-
istence of an excitation gap, presumably due to many-
body correlations arising from the Coulomb interac-
tion. Considerable theoretical effort has been made to
understand the nature of the ground state which, at
least for values of the Landau-level filling factor of the
form v = I/m, where m is an odd integer, seems to be
quite well described by Laughlin's variational wave
function. 2 In this Letter we present a theory of the ex-
citation spectrum in the FQHE analogous to
Feynman's theory for the excitation spectrum of su-
perfluid ~He. 3

The Feynman argument for the excitation energy is
equivalent to the assumption that the dynamic struc-
ture factor4

S(%to) = X„l&n Ipklo& I'&(E„—Eo —co)

is of the form

SMA by noting that it works well in a variety of sys-
tems. In superfluid 4He it is exact at long wavelengths
and gives a good approximation to the entire phonon-
roton excitation curve. For the three- and two-
dimensional electron gas (no magnetic field) it is again
an excellent approximation to the plasmon at long
wavelengths and a rough fit to the entire single-particle
plasmon continuum at shorter wavelengths. For the
two-dimensional electron gas in a large magnetic field
it gives an accurate description at long wavelengths of
the magnetoplasmon mode near co,

—= eH/mc. In gen-
eral the SMA is accurate at long wavelengths where
the oscillator strength in continuum modes is small or
wherever these continuum modes do not exist.

For the FQHE high-energy cyclotron modes are not
of primary interest. Of more relevance to the experi-
ment and the nature of ground-state correlation are
the low-lying excitations. Equation (3) tells us very
little about such modes. However, if we insist that the
excited states I n) in Eq. (1) lie within the lowest Lan-
dau level we get a version of Eq. (3) (the projected
SMA), which describes these low-lying excitations. To
do this we replace pk by its projection pk (bars indicate
projected quantities), i.e. ,

b, (k) =f(k)/s(k).
With use of the projected density operators (z&
= x~ + lp~, k = kx + tky )

where the oscillator strength is

f(k) =N 'J dtocoS(k, to), (4)

N

pk= X exp(ikB/Bzj)exp(ik'zj/2),
j=1

(6)

and s(k) is the static structure factor.
We may gain some insight into the validity of the

s ( k) is easily shown to be

s(k) = s(k) —(1 —e "~ )
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[t= i—= (ec/H)ti/'= ll
To find the projected oscillator strength we manipu-

late Eqs. (1) and (4) in the standard way, 4 i.e.,

f(k) = N-'(olp, '[0,p, llo),

where the projected Hamiltonian is

0= —,'„t [d q/(2 ) l (q) [p p —p l.
Under the assumption that the electrons are embedded
in a solid with a static dielectric eo, v(q) = 2vre /(eoq).
The commutation in Eq. (8) may be computed to yield

f(k) = (v/2~) [d2q/(2~)2]&(q) Jtd2r [g(r) 1][e—Ikl /2eiq r(e(& —k &)/2 I)

+ ei(k+q) r(ek'q —ek i)] (lo)

where g (r) is the two-point correlation function related to s(k) (for a homogeneous and isotropic system) by

s(k) = 1+p„td2re'"'[g(r) —1]+p(2vr) 5 (k). (»)
We have thus succeeded in expressing 6 (k), the excitation energy, in terms of quantities dependent solely on the
ground state. Since the kinetic energy has been quenched by the magnetic field the scale of energy is set solely by
the scale of the interaction [e /(col) ].

Expansion of Eq. (10) shows that f(k) vanishes as ski . Examination of (7) and (11) shows that s(k) also van-
ishes as iki4 if MD= Mt= —1, where

M. = pJt d'r(r'/2) "[g(r) —1 l. (12)

In the symmetric gauge, at any filling factor v, g(r) may be written as

p[g(«) —1]=(2 ) ' X ( /2)'exp( — /2)/s![(, ) —(,) (n ) — g, ],
s=0

(13)

where n, is the occupation number for the sth angular
momentum state. Substitution of (13) into (12) yields a coefficient which may be calculated exactly, i.e. ,

8'9

MD= v '[(Nno) —(N) (no) ] —1,

Mt = v '[((L + N) no) —(L + N) (no) ] —1, (15)

where N=g, =on, and L =g, =osn, are the total parti-
cle number and angular momentum. Since L and N
are constants of the motion, their fluctuations vanish
leaving MD=Mt= —1. This general result implies
that for any homogeneous and isotropic ground state
s(k) = ik i for k 0. In order to relate this ground-
state property to the excitation spectrum we must use
the SMA which may only be approximate. However,
it seems p/ausible that in this system there can be no
low-lying single-particle excitations to defeat this gap.
The kinetic energy necessary to produce such excita-
tions has been quenched by the magnetic field. Hence
we can conjecture that the only way that gapless excita-
tions can occur is as Goldstone modes in systems with
broken translation symmetry (e.g. , the Wigner crys-
tal ). In this approximation, it would appear that the
existence of a gap for liquid ground states is the rule
rather than the exception. Whether or not liquid
ground states must have rational v is an entirely
separate question, about which nothing has been
proved.

In order to evaluate Eq. (5) using (10) and (11) we
need a specific model for the ground state. We have
chosen to use the Laughlin ground state (LGS) for
v= —,', —,'. For the LGS s(k) does vanish as ski with

s(k) = Ikl (1 — )/8 . (16)

For the LGS we chose to fit an analytic parametriza-
tion' for g(r) to the Monte Carlo simulation data of
Ref. 7. The resulting gap functions from Eq. (5) for
v= —, , —, are plotted in Fig. 1. The deep minimum in
the gap dispersion is caused by a peak in s(k) and is,
in this sense, quite analogous to the roton minimum in
helium. We interpret the deepening of the minimum
in going from v = —,

' to v = —,
' to be a precursor of the

collapse of the excitation gap which occurs at the criti-
cal density for Wigner crystallization (v —6', ). Fur-
ther evidence for this interpretation is provided by the
fact that the magnitude of the primitive reciprocal lat-
tice vector for the crystal lies close to the roton
minimum, as indicated by the arrows in the figure.

Note that the v= —,
' results are in excellent agree-

ment with the small system (N= 6, 7 particles) nu-
merical calculations of Haldane. " Note also that in
contrast to the case of helium the SMA works well
without explicit backflow corrections even in the re-
gion of the roton minimum. This can be understood
from a semiclassical point of view (which can be
shown to be valid for the lowest Landau level) in
which the local current density has the form
J(r) = p(r)V@(r) &&8, where @ is the local potential.
The current density around a particular charge then sa-
tisfies V' J=O so that the backflow condition (con-
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tinuity equation) is automatically satisfied.
For wave vectors beyond the roton minimum the

SMA rapidly breaks down and it can be shown that the
exact first moment of the excitation spectrum satu-
rates at a large finite value 2 ~E, ~/(I —v), where E, is
the cohesive energy. Nevertheless, it is possible for us
to estimate the excitation gap at k = ~ by supposing
that the lowest collective mode crosses over at the ro-
ton minimum from being a pure density oscillation to
a bound quasiparticle-quasihole exciton. 9 The asymp-
totic exciton dispersion is b,„(k)=b,„—u /k. Equat-
ing this to the SMA approximation to the gap at the
minimum yields b, y~3 t/5=0. 106, 0.025. These values
lie considerably above the results of hypernetted chain
calculations of Laughlin, At/3 t/5 0.057, 0.014, and
of Chakraborty, ' b, t~/3 t/s

= 0.053, 0.014. However,
preliminary Monte Carlo results of Morf and Halpe-
rin' yield a larger value, b, t/3 0.094 + 0.005.
Haldane's small system calculations" yield a value
(extrapolated to X=~) of b, t/3

= 0.105 +0.005, in ex-

FIG. 1, Gap 5 vs wave vector for v = T,T. Circles are

from N=7 small spherical system calculations of Ref. 10.
Horizontal error bars indicate uncertainty in conversion of
angular momentum on a sphere to linear momentum. Tri-
angles are for N = 6 periodic boundary condition calculations
with a hexagonal unit cell of Ref. 10. The arrows indicate
the magnitude of the primitive reciprocal-lattice vectors of
the hexagonal signer crystal, for v = T,T. No small system

calculations exist for v = T.

cellent agreement with the present result. Meaningful
comparison of these results with experimental activa-
tion energies' must await a deeper understanding of
the role of disorder.
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