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Scaling of the Metastability Boundary of a d = 2 Random-Field Ising System
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The H and T dependence of the magnetic Bragg peak intensity has revealed a relatively sharp me-
tastability boundary TF(H) in a d = 2 random-field (RF) Ising system: Rb2CooasMgo ~sF4. Re-
markably, TF(H) scales as TN —TF(H)~ H ~, with the RF crossover exponent /= 1.74+0.02,
and lies just inside the RF crossover region. Freezing must therefore be tied to RF critical
behavior. The approach of the system to equilibrium at Tr(H) proceeds logarithmically with time.

PACS numbers: 75.30.Kz, 75.40.Dy, 75.50.Ee, 75.60.Nt

It is widely believed that metastability is an inherent
feature of the random-field Ising model (RFIM) .'
This is in keeping with pronounced time-dependent ef-
fects that have been observed in recent studies of
RFIM systems. However, current theories provide
little guidance as to how the metastability region
depends if at all, on dimensionality d, and how it re-
lates to the scaling behavior observed at or above di,
the lower-critical dimensionality of the RFIMs (now
generally accepted to be di = 2). We report here on a
neutron scattering study of a d =2 RFIM system:
Rb2CoossMgo»F4, a diluted antiferromagnet (AF) in
which a uniform field H generates a random field H~F
proportional to H. We have located, for the first time,
the metastability boundary and found that it is a fairly
narrow and well-defined region whose center TF(H)
shifts with H relative to Tz as

TN —TF (H) ~ H i~~ Hg-~p

with /=1.74+0.02. This could only be the case if
random-field crossover scaling governed the onset of
metastability just as it does the shift in T„ the cross-
over region, and, at d = 2, the rounding of the phase
transition. We have found that the approach to equili-
brium is logarithmic in time, as most theories predict.
The crossover exponent @ is in excellent agreement
with the pure d = 2 Ising susceptibility exponent

7
4

Metastability should accompany the hysteresis that
is observable in neutron scattering experiments on
d =2 or d =3 diluted AF. It is found that domains
are frozen in at low T in field-cooling (FC) but not in
zero-field —cooling (ZFC) experiments. The domain
structure, with a characteristic length varying roughly
as H, irrespective of d, manifests itself in the
broadening of the AF Bragg peak which is otherwise
resolution limited.

Here we focus on locating the metastability boun-
dary and determining its dependence on HRF. To ac-

complish this the system was initially prepared in a
nonequilibrium state at low T. Then, as T was slowly
increased, we monitored the evolution of the system.
The point where equilibrium first occurs was estab-
lished by noting the absence of hysteretic behavior
above it.

Neutron scattering measurements were performed at
the Brookhaven National Laboratory. We used the
identical sample upon which birefringence (b, n ) mea-
surements had established the destruction of the
phase transition by HRF at d = 2; Rb2Co085Mgo q5F4. It
is 4X 4X 6 mm with the largest dimension along [001].
It was masked with cadmium, and exposed for only
that portion ( ——, ) for which 4n measurements had
shown that the concentration was uniform to within
0.10/0 or better. The structure factor S(q) was studied
in the vicinity of the (—', , —,', 0) magnetic reflection and
will be reported elsewhere. Here we are solely con-
cerned with how the relative intensity I(T,H) of the
scattering at the Bragg peak depends upon the pro-
cedures used to arrive at a given T and H. I(T,H) is a
sensitive indicator of the presence of domains, since
these both broaden S (q) and decrease I(T,H).

The sample was mounted on a copper block with a
carbon-glass resistor to effect accurate and relatively
field-independent temperature measurements with a
stability of better than 10 mK. Overshoots of the final
temperature setting could be kept to less than 20 mK.
The c axis [001] was aligned parallel to H and data
were taken at H = 0, 1.00, 1.74, 2.65, 4.38, and 6.50 T.

In the AF state I(T) is proportional to the square of
the sublattice magnetization Mo(T), except very close
to TN, as is shown in Fig. 1 by the curve labeled H = 0.
Very close to TN (TN = 76.35 K) scattering from criti-
cal fluctuations contributes to I(T), both above and
below TN. This obscures the sharpness of the phase
transition as monitored by I(T).

At d = 2 the AF state is the ground state only at
H = 0, but a metastable AF configuration was achieved
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FIG. 1. AF Bragg peak intensity I (T) vs T at H = 0, and
for zero-field cooling (ZFC) and field cooling (FC) at
H =1.74, 4.38, and 6.50 T. The arrows indicate the direc-
tion in which data were taken.

as follows: The sample was subjected to ZFC to a tern-
perature T; well below TN. Keeping T; fixed, the field
was raised but no change was observed in I(T, ), i.e. ,
l(T, ,H) =I(T;,0), indicating that nonequilibrium AF
conditions prevailed. As T was slowly increased (at
constant H), I( T) was seen to follow its H = 0 depen-
dence on T up to a rather well-defined T, whereupon
I(T) began to fall dramatically with increasing T. This
continued until it joined (again at a rather well-defined
T) the curve for I(T) vs T that was obtained from a
FC procedure at the same field H (see H & 0 curves in
Fig. 1). Equilibrium prevails when the FC and ZFC
routes to a given (T„H, ) result in identical values for
I(T„H,). The FC curves of I(T) exhibit a slow but
monotonic increase with decreasing T with no sharp
features and with I(TH) always well below I (T, 0),
indicating a domain configuration. Over the range of
T shown, the FC curves for I(T) exhibited no ap-
parent hysteresis. The ZFC and FC procedures were
performed at each of five fields; curves for I ( T) vs T
for only three of them are shown in Fig. 1. The width
in T of the region over which the system evolves from
metastability to equilibrium is relatively narrow and in-
creases with increasing H.

An interesting feature of the ZFC I(T) vs T curves
is that the metastability boundary appears to approach
TN as H decreases. Hence one is led to examine its
shift relative to TN. We define a temperature TF(H)
to be the point of maximum —dI (T)/dT in a ZFC ex-
periment. The difference TN —TF(H) vs H is shown
in a log-log plot in Fig. 2 for all five fields. Quite re-
markably TN —T~(H) not only exhibits power-law
behavior but

TN —TF (H) = CH /~,

with @=1.74+0.02. This is precisely the form one

IO

H(T)
FIG. 2. Scaling behavior of TN —Tr(H)~ H2i~ The me-.

tastability boundary TF(H) is defined as the point where
( —)dI(T)/dT is a maximum in the ZFC procedure. The
slope 2/@ yields the crossover exponent @= 1.74 + 0.02.

would expect if RF crossover scaling governed the on-
set of metastability, just as it does the shift in T„ the
crossover region, and, at d =2, the rounding of the
phase transition. If this is the case, @ should be equal
to the susceptibility exponent y =

4 of the pure d = 2

Ising system —and this is exactly what is observed!
Both the temperature at which the ZFC and H = 0 data
first deviate from each other and the one at which the
ZFC and FC data first coincide obey exactly the same
scaling behavior as TF(H), which implies that the
width of the metastability boundary also scales as indi-
cated in Eq. (1).

That the scaling result of Eq. (1) describes the data
so well leads to the surprising prediction that TF(H)
exactly coincides with TN when H=0. To test this
idea, we cooled the sample in a field H = 6.5 T to
T ( Tz(6.5 T) =66.1 K. I(T) changed little upon
lowering the field to zero (see Fig. 3), indicating that a
metastable domain state was indeed frozen in. As T
was then slowly increased, I(T) decreased, remaining
roughly proportional to I(T) when cooled at H = 0,
but with its amplitude reduced by a factor of —3.5.
Only within a 0.5 K of TN was any departure from this
behavior observed. I (T) then increased sharply, join-
ing the H =0 curve essentially at TN as shown in Fig.
3. Further increases in T resulted in I (T) exactly du-
plicating the H = 0 result. This confirms that
Tz(H = 0) and TN essentially coincide.

All measurements shown in Figs. 1 and 3 were made
during the same length of time, about 3 min/point. In
the ZFC studies we noticed that I(T) exhibited some
time dependence, if we attempted to repeat measure-
ments in the vicinity of TF(H) where the slope of
I(T) vs T is large. No time dependence was seen ei-
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FIG. 3. 1(T) vs T, when first field cooled at 6.50 T, H
then reduced to zero, and T subsequently increased (ZFH).
The nearly vertical line is 1(T) vs T close to TN with H = 0.

FIG. 4. Semilog plot of 1(T), at T = 66.1 K and H = 6.50
T, as a function of time, after ZFC. The horizontal bars
represent the length of the counting interval.

ther well above or below this region. To study this
time dependence at T~(H), the sample was subjected
to ZFC to T= 66.1 K= TF(6.50 T). Then H was
raised to 6.50 T as quickly as possibles and 1(T) was
monitored repeatedly at 48-s intervals during a period
of 200 min. The integrated 1(T) for each interval is
shown in a semilog plot in Fig. 4 as a function of
elapsed time, measured to the center of each interval.
The horizontal bars on the points at early times are
simply the 48-s interval widths. Points at later times
represent averages over more than one interval. 1(T)
is seen to decrease logarithmically with time over more
than two decades. Logarithmic time dependence in
the approach to equilibrium is characteristic of many
current theories of nonequilibrium behavior in RFIM
systems. '

Since TF(H) is found to exhibit the scaling proper-
ties associated with the RFIM critical behavior, the
metastability boundary must be intimately connected
with, and may be an integral part of, the RFIM critical
behavior. With regard to the RFIM, Fishman and
Aharony showed that new critical behavior is expect-
ed within a crossover region

(2)

where t = (T —TN+bH )/TN is the reduced tempera-
ture measured from the mean-field phase boundary
T, "(H) = TN —bH and c is a constant of order of un-
ity. h RF is the reduced mean square random field; ex-
pressions for h&F~H are given elsewhere. ' In the
birefringence study of the critical region the coeffi-
cients corresponding to the shift of T, and the round-
ing of the transition with H have been found to be
c = 0.9+a 4 and c' = 5.4+ t s, respectively. Thus the

rounding of the transition is considerably larger than
its shift. Using a similar analysis, we find that the
lower (T,, ) and upper (T,+, ) crossover boundaries,
at which the H & 0 4n data first deviate from those at
H = 0, yield coefficients c,, = 45 + 5 and c,+ = 30 + 5,
respectively. However, TF(H) is found to scale with
coefficient cF ——29+ 1. Hence for the d = 2 RFIM,
TF(H) occurs slightly inside the random-field cross-
over region, whereas all of the "critical" behavior of
the (destroyed) phase transition (i.e., the shift and
rounding) occur well above TF(H), and thus take
place in a region where thermal equilibrium is well es-
tablished! The scaling of the various quantities is illus-
trated in Fig. 5, which is the most appropriate
representation of a phase diagram for a RFIM system.

Since "freezing" occurs just below TN (but well
above T = 0 K), neither by ZFC nor by FC can one ac-
cess the Imry-Ma" T=O K ground state of a d =2
RFIM system. It follows that one would not expect to
see a field dependence of the domain size that is
characteristic of the Imry-Ma state. Rather, the
domains that one sees are governed by critical
behavior. They have a size, for T ( Tz(H), charac-
teristic of the equilibrium configuration at or near
TF(H), and do not change significantly with decreas-
ing T.

Lastly, it is worthwhile to contrast the behavior seen
here at d =2=di and that found at d =3 ) di as re-
gards freezing and the phase boundary. It has been
shown4 that a sharp phase transition T, (H) occurs in a
d = 3 RFIM system with critical behavior characteristic
of lower effective dimensionality d = 2. If one
accesses the transition region via FC, domains begin to
freeze at TF which is just above but very close to
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FIG. 5. New d =2 RFIM "phase diagram. " Shown are
the scaling behavior of the (I) location TF(H) and width of
the metastability boundary; (2) location T, (H) and width
(indicated by shading) of the destroyed phase transition; and
(3) random-exchange-random-field crossover boundaries
T,+ (H) and T,, (H). (2) and (3) are obtained from b n

measurements of the magnetic specific heat (Ref. 3).

T, (H). Thus a sharp transition at Tc. (H) may be seen
only after ZFC. There is preliminary evidence that
Tz —TN itself scales as H ~~ and that below T, (H) the
AF state is stable but the FC one is not. '
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