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Role of Memory Effects on the Spreading Width of a Collective State
in Extended Time-Dependent Hartree-Fock Theory
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The linearized version of the extended time-dependent Hartree-Fock theory with memory effects
in the collision term is used to describe the spreading width of collective states. The retention of
the memory effects is shown to enforce the energy conservation between a collective state and the
more complicated states responsible for its damping.
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In this Letter we describe the damping widths of col-
lective states in linearized extended time-dependent
Hartree-Fock (TDHF) theory. The main purpose of
this work is to demonstrate the effects of non-
Markovian features of the collision term on the
spreading widths.

Several approaches have been proposed to extend
the TDHF theory by incorporation of two-body col-
lisions which are neglected in the TDHF approxima-
tion. Various theories have been reviewed. ' 5 In all
these approaches, the time-dependent single-particle
density matrix, p(t), is determined by an equation

K(p) = Jf dt'Tr'i V(t),g(t, t') [ V(t'), F(t')]g (t t')),

which includes a collision term in addition to the usual
mean field,

t'(t)/t) t)p(t) = [& (p), p] —iK(p),

where h(p) is the self-consistent mean-field Hamil-
tonian, and K(p) denotes the collision term. This col-
lision term is derived in a weak-coupling approxima-
tion which includes two-body correlations only in the
lowest order and neglects three-body and higher-order
correlations. Here the specific form of the collision
term which was derived in Ref. 4 [see Eq. (3.1) in the
first part of Ref. 4] will be used. It is given as

( t) e —0 t5p + e + i 0 t5 p't (4)

where F(t) =M p(t)p(t) p(t) is the uncorrelated
A-particle density matrix, g(t, t') is the mean-field
propagator, and V(t) =u —Trop(t) is the residual in-
teraction. Tr' denotes a partial trace taken over all the
degrees of freedom by A —1 particles, and as a result
K (p) becomes a one-body operator.

Observe that because of the non-Markovian form of
collision term (2), the evolution of the single-particle
density matrix depends on the previous history of the
system. The purpose of this Letter is to study this
memory effect on the damping widths of small-
amplitude collective motion. To this end, we linearize
the equation of motion (1) around the static equilibri-
um density matrix at finite temperature, pp( T),

p(t) = pp(T) + pi(t).
We will work in the representation in which both
ho= A(po) and po(T) are diagonal.

The time dependence of normal modes is sought in
the form

Q5p= [hp, 5p]+ [5h, po] —i5K(II), (5)

where smail deviations in the mean field and in the
collision term are given by

(6)Ah = Trump,

5K = Jt d7 e'"'Tr'[ V, e [ V, 5F]e o]. (7)

In Eq. (7) the upper limit was extended to infinity, 6

and the imaginary part of 0 is neglected in the ex-
ponent, ~ = ReA. It is important to note that the col-
lision term in (5) depends on the collective frequency.
Therefore the magnitude of the collision term can be
quite different from its value in the Markovian ap-
proximation.

We will call Eq. (5) the extended random-phase-
approximation (RPA) equation. The coherent solu-

! where II is a complex frequency. Separating the posi-
tive and negative frequency components of the linear-
ized form of (1), we obtain a dispersion equation for
the frequencies and amplitudes of the normal modes:
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tion of (5) yields the collective RPA state with com-
plex frequency, 0 =co —i I /2, where cu and I are iden-
tified with the energy and width of the collective RPA
mode. This extended RPA equation can be put into a
more familiar form by introducing the operators 0
and 0 (which correspond to the phonon excitation and
deexcitation operators in the usual RPA theory ) de-
fined as

Bp = [0,po].

The matrix elements of (5) yield the extended RPA
equations for the amplitudes (mlO li) and (mlOli).
In order to obtain a closed expression for width, I, we
multiply (5) by the operator 0 and take a trace over po
which gives for I"

width due to particle emission and the spreading width
due to coupling to more complicated states. Full
results are discussed in a forthcoming publication,
and in the present Letter we will concentrate on the
spreading width. To this end we consider the inter-
rnediate states of the 2p-2h nature only. Note that
since we work at finite temperature T, particle (or
hole) states are defined so as to be unoccupied (or oc-
cupied) when T 0, and they have Fermi-Dirac p(T)
occupation factors at finite T. After intermediate
states are inserted, time integration of (10) can be per-
formed, which leads to an energy-conserving 5 func-
tion between the collective state and the 2p-2h states
degenerate with it. The resulting expression for I &

can be written as

I = 2 Re [Tr05K]. (9)

By insertion of (7) for 5K and use of a cyclic permuta-
tion property of trace, (9) can be expressed as

p OO

I = 2 ' dr e""Tr[D (0),D (~ ) ]Fo+ 51, (10)

where

D (7) =e ' '[VO ]e

and 5 T is a small contribution and will be omitted in
this Letter. The result (10) contains both the escape

The summation I runs over 2p-2h intermediate states
with energy EI =e +e„—e; —e~, and the occupation
factors

SI ( T) = [1—p~ ( T) ] [1—p„(T) ]p; ( T)pz ( T).

The strength DI denotes 2p-2h matrix elements of D
which describes the coupling between the coherent p-h
mode (defined in terms of 0 ) and 2p-2h configura-
tions and is given by

DI —= ( mn l D l ij ) = X ( ( Inn l V
l iq ) 0~ + ( mn l V

l qj ) Oz~ ) —Xk ( O~k ( kn l V
l ji) + O„k ( mk l

V
l ji) ) . (13)

and similarly for DI.
The expression (12) is the central result of the

present work. It is not an explicit expression for the
width I', since it contains the collective excitation
operators 0 and 0 which in turn depend on the col-
lective frequency A. However, it is possible to use in
this expression the unperturbed collective operators
corresponding to 0 = cu. Observe that the width
depends on temperature through the occupation fac-
tors SI(T). At zero temperature and for finite fre-
quencies the second term of (12) vanishes identically
as a result of energy conservation and the expression
for I I reduces to the second RPA result of Yan-
nouleas, Dworzecka, and Griffin. 8 The non-
Markovian character of the collision term in (2) re-
tained in our calculations enforces the energy conser-
vation between the collective eigenmode with the fre-
quency co and more complicated (2p-2h) states which
are responsible for its damping. On the other hand,
the Markovian approximation consists of the require-
ment that

in the collision term. In the small-amplitude limit this

is equivalent to the replacement of the collective fre-

quency cu by the unperturbed particle-hole energy
6p 6h cv E p

E'
h As a result, contrary to the non-6

Markovian expression (12), which guarantees energy
conservation with respect to the actual collective ener-
gy, the Markovian approximation destroys the energy
conservation. The consequence of this fact can be
seen clearer in the expression described below when
the spreading width is approximated in terms of
single-particle widths.

Note that the expression (12) contains squares of
coupling matrix elements (13) and hence, in general,
will have interference effects between particles and
holes. Since in the collective states particles and holes
act coherently this interference effect may be quite
large and typically will reduce the total width. 9 This
effect is destroyed if a statistical approximation for the
matrix elements of the residual interaction' " is
made. On the other hand, with such a statistical ap-
proximation (which retains only the squares of matrix
elements of residual interaction), the expression (12)
for the width can be written in the form of an indepen-
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dent particle-hole decay model as

I i = X,.[1,.(~) tO', t' —I;(—~) to;I'lp;(I —p ).
In addition to neglecting interference effects we have
also used the fact that only p-h matrix elements of 0
are nonvanishing; hence we put the occupation factor
for p ( or h) states to limit the summation.

Here I;(c0) is the sum of the width for the particle
(I ) and hole states (I;) at finite temperature,

I;= I (e;+ co) + I;(e —to). (16)

In the expression (15) the interference effects due to
coherent structure of the collective mode are des-
troyed by the statistical assumption introduced above.
Hence, this result is clearly approximate. On the other
hand, (15) is suitable for discussion of the connection
(albeit approximate) between the spreading width of
the collective state and the widths of individual particle
and hole states comprising the collective state. As is
seen in expression (15) the spreading width of the col-
lective state is given approximately by the weighted
average of the individual particle and hole widths.
Contrary, however, to a naive independent-particle
model, here the single-particle and hole widths have to
be evaluated at shifted energies because of the require-
ment of energy conservation between the collective
mode and the 2p-2h states into which this mode de-
cays. This shift in single-particle energy is the conse-
quence of the memory effects in the collision term, as
discussed above. The single-particle widths strongly
depend on the excitation energy9; hence the fact that
these widths are calculated at the energy determined
by the excitation energy of the system, and so shifted
with respect to unperturbed p-h energy, can effect the
spreading width considerably.

In conclusion, we have demonstrated that the
memory effects in the collision term play an important
role in determining the spreading width of the collec-
tive mode. In particular, it enforces the conservation

t of energy between the collective mode and the states
responsible for its decay.
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