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We propose and analyze a simple model for the surface of an imperfect crystal in equilibrium
with its vapor, below the roughening transition. We show that this system exhibits typical glassy
behavior and opens the exciting possibility of experimentally testing recent theoretica1 ideas orig-
inating in spin-glasses.

PACS numbers: 68.20.+ t, 61.40.Df

Our understanding of spin-glasses has greatly im-
proved following Parisi's solution' of the Sherrington-
Kirkpatrick model. 2 The picture that emerged is that
of a glassy phase, characterized by an infinite number
of thermodynamic equilibrium states, for which there
exists a natural notion of overlap (or codistance):

Q~p rriI mr r

i=1

where I, is the local magnetization at site i in the
state n. Parisi3 suggested that an appropriate order
parameter for the spin-glass transition would be the
distribution of overlaps, or more generally the
geometric structure of the space of pure states, which
in the Sherrington-Kirkpatrick model was in particular
shown to be ultrametric: Any triangle in this space has
its two largest sides equal, implying that states can be
organized in hierarchical clusters. 4 Recent numerical
studies5 6 indicate that ultrametricity could be a
universal property of the glassy phase.

The question naturally arises whether such theoreti-
cal contentions can actually be tested in the laboratory.
With magnetic alloys one would have to reconstruct
local magnetizations from neutron-diffraction data, 7 a
rather formidable task. In this Letter an alternative
will be proposed: I will show how crystal-vapor inter-
faces, in the presence of screw dislocations, can ex-
hibit glassy behavior (reminiscent of the two-di-
mensional Ising spin-glass), and provide us with a
physical system in which overlaps might be easier to
measure (by counting common strings in photo-
graphs), and the geometric structure of the space of
pure states could, therefore, be experimentally probed.
I will propose and analyze a simple model for the low-
temperature behavior of this system, by adapting a
well-known combinatorial optimization problem. The
results are, therefore, also relevant in light of the re-
cent interest in the structure of such problems.

To draw an analogy between smooth interfaces and
spin-glasses, consider the two-level solid-on-solid
model'0 of a (100) surface of a perfect cubic lattice at
thermal equilibrium with its vapor. The partition
function is

where the summation runs over all configurations of
nonoverlapping closed strings (or steps) s, of length
L (s), on a square lattice, and rT is the energy cost of a
step per unit length. Linear defects in the crystal
modify this picture by providing sources and sinks for
the strings. This is because screw components mani-
fest themselves on the surface" as positive or nega-
tive'2 topological point defects, such that on making a
complete clockwise turn around them, one is found at
a level higher or lower than one's starting position.
We therefore obtain

e —P L~»
Zimperfect

matching s
(2)

where the summation now runs over all string config-
urations that "match" a given quenched distribution
of dislocations, i.e. , such that an open string connects
every positive defect to a single negative defect and
vice versa.

The reader will no doubt recognize in (1) the two-
dimensional Ising ferromagnet, and in (2) a close
resemblance to the two-dimensional Ising spin-glass
on a square lattice with nearest-neighbor couplings re-
stricted to be +a-. '3 Indeed, to each spin configura-
tion corresponds a configuration of dual-lattice strings
traversing all unsatisfied bonds (bonds of nonminimal
energy). Frustrated plaquettes have an odd number of
such bonds: They are therefore string end points,
playing the same role as screw dislocations in crystal
surfaces, except that (a) they can act as both a source
and a sink, and (b) they have a distribution induced by
that of negative couplings, which in particular implies
that at low concentrations they tend to be bound in
pairs; this need not be the case with screw dislocations.

A little thought should convince one that the impor-
tant degree of freedom, responsible for the glassy
behavior, is the choice of defect matching. We there-
fore consider a simple model, with N sources and N
sinks distributed independently and uniformly over
some d-dimensional volume V. Let DJ be the Eu-
clidean, or Manhattan (shortest path on a lattice), dis-
tance between the ith source and the jth sink. We de-
fine the partition function

Z ~ e —P~L(s)
perfect

closed s

Z X e-PA (~) (3a)
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where the summation runs over all matchings of
sources to sinks, i.e. , all permutations m- of N objects,
and the energy is

N

~(n) =o- XD,„(,). (3b)

The infinite volume limit is taken by keeping the den-
sity p = N/ V fixed, and thermodynamic variables
should be averaged over all quenched distributions of
defects.

Let me here warn the reader that model (3a), (3b) is
expected to describe only the structure of ground
states, or very low-temperature (meta)stable states of
a real crystal surface. This is because, in order to iso-
late the effects of frustration and ground-state degen-
eracy, I have concentrated on the choice of defect
matching, and totally neglected other degrees of free-
dom such as closed strings and fluctuations of indivi-
dual open strings, which give rise to surface roughen-
ing and render the model inadequate at kT„„sh—o-.

At lower temperatures, however, their effect can be
summarized by a finite renormalization of (a) the dis-

tance matrix Di& and (b) concerning nonequilibrium
phenomena, the relaxation time scale. The time-scale
renormalization is due to the existence of potential
barriers separating any two neighboring (i.e. , differing
by an interchange of two sinks) configurations, since
such an interchange must proceed first by deformation
of two strings, until they touch and can resettle in their
new configuration. Finally note that the approxima-
tion of quenched defects is justified, since screw dislo-
cations are anchored in the bulk of the crystal: Their
distribution is therefore determined by preparation
rather than by thermodynamic equilibrium.

The annealed, rather than quenched, averages are
easy to compute. Using for instance Manhattan dis-

tances in d dimensions, I obtained the following for
the free energy, entropy, and average length per string:

1

1 1 p "o-"
ln(Z) = —+ —ln

PN P P p

~,„„=(d 1) In(P4~4/p—), —/, „„=d/P~,

respectively. At p=0 there is a nonanalyticity com-
mon to all models whose configuration space grows
faster than exponentially with the volume. At

Pr«„,„s= (P'~ /o. )exP(1 —1/d) the annealed entroPy
becomes negative, a signal that quenched frustration
and freezing become important, rendering the an-

nealed approximation inadequate. '4 This is confirmed
by Monte Carlo simulations, which cannot, however,
decide on the existence or nonexistence of a sharp

phase transition. '
The present numerical analysis of the geometry of

locally stable states followed closely the corresponding
analysis of the traveling salesman problem (TSP) by
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I"ICi. 1. 'I ypical overlap distributions for three-
dimensional Euclidean (black dots), two-dimensional Eu-
clidean (white dots), and two-dimensional Manhattan (trian-

gles) distances. The mean value q = T (broken line) follows

if one assumes a flat distribution of nonzero occurrence fre-
quencies of strings in two-optimal degenerate configurations
(Ref. 20).

Kirkpatrick and Toulouse. 6 I studied samples of
N = 40 and 60, in both two and three dimensions, with
both Euclidean and Manhattan distances. I found
two-optimal configurations (i.e. , those stable under a
permutation of any two sinks) by first cooling across
the freezing temperature, and then searching locally.
The overlap of two configurations is defined as the
fraction of their common strings,

iv

0~)s N g m (i).sii(i)i=1

while their distance is d &=1—Q &. Typical overlap
distributions (with each two-optimal configuration
below some energy cutoff contributing with equal
weight) are plotted in Fig. 1. They are sharply peaked
near q = —, . I also looked at groups of three configura-
tions; we can represent each group (n, p, y) by a point
inside an equilateral triangle, such that its distances
from the three sides are proportional to d &, d&, and
d . A measure of ultrametricity violation is then de-
fined, and its distribution plotted in Fig. 2.

A comment is in order here concerning the striking
resemblance of these results to those obtained by
Kirkpatrick and Toulouse for the TSP6: In combina-
torial optimization finding the ground state of (3b) is
known as the bipartite matching problem and, unlike
the TSP, is polynomially solvable. '6 We are thus led
to conclude that the geometry of locally stable states
cannot, by itself, distinguish NP-complete)7 from poly-
nomially solvable problems. The former could per-
haps be characterized by the possibility of a finite tran-
sition temperature (infinite potential barriers in the
thermodynamic limit). ts

54



VOLUME 54, NUMBER 1 PHYSICAL REVIEW LETTERS 7 JANUARY 1985

I (u)
cherche Scientifique, associe a I'Ecole Normale
Superieure et a 1'Universite de Paris Sud.

I

0.1 0.2 0.3

o

h

0.4 0.5

FIG. 2. Typical distributions of triplets of two-optimal
states for three-dimensional Euclidan (black dots), and
two-dimensional Euclidean (white dots) and Manhattan (tri-
angles) distances. Each triplet corresponds to a point inside
an equilateral triangle: by projecting it along the normal
bisector one obtains its coordinate u (upper right corner).
The little shaded triangle is the accessible region after order-
ing the overlaps and taking triangular inequalities into ac-
count (Ref. 5). A uniform distribution inside this region
gives the broken line for P(u). Perfect ultrametricity gives
a 5 function at u = 0.

I conclude with some remarks on the prospects of a
real experiment: As in spin-glasses, one could explore
different free-energy valleys by repeatedly heating and
cooling the surface, or by applying a vapor pressure (in
some sense the analog of a magnetic field) to induce
crystal growth and then letting the system relax to a
new equilibrium. The main difficulty that I anticipate
is the following: As has already been noted, the ener-
gy landscape of model (3a), (3b) is in reality decorated
with small bumps, of the order of the energy needed
to deform a typical frozen string (= o-p ti2). Below
the roughening transition this leads to a renormaliza-
tion of atomic relaxation times by a factor
= exp(P„„ghcrp 'i2), which risks to be enormous. It
could be reduced (a) by using close-packed surfaces of
asymmetric lattices (this reduces the cost of coherent
string fluctuations relative to roughening or adsorption
energies), and (b) by increasing the density p of dislo-
cations up to the available resolution limit. '

In summary, I have proposed and analyzed a simple
glassy model of the low-temperature properties of
steps on a crystal surface, in the presence of quenched
dislocations. This might open the possibility of experi-
mentally testing recent theoretical ideas in spin-
glasses.
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