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Quantum Electrodynamic Energy Shifts of Quarks Bound in a Cavity
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The lowest-order quantum electrodynamic corrections to the energy levels of quarks bound in a
spherical cavity are evaluated over a wide range of values of the quark mass. It is found that the
self-energy is positive for massless quarks and decreases smoothly as the quark mass increases.
The interaction energy between quarks is also calculated and found to dominate the self-energy
correction. For this model, the vacuum polarization correction vanishes.
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The problem of understanding the electromagnetic
mass shifts of hadrons is a very old one. The fact that
the proton mass differs from the neutron mass by
0 59(ct/. 7r)m~ suggests that the small mass difference
might be calculable as an electromagnetic effect,
although the sign of the effect is opposite to what one
would expect. ' The essential difficulty of the problem
is that although the behavior of the photon, whose
emission and reabsorbtion gives rise to the lowest-
order electromagnetic mass shift, is well understood,
the behavior of the hadronic system in between these
interactions depends on the far less well understood
strong interactions. In earlier approaches this problem
of accounting for hadronic structure was recast by the
use of the Cottingham formula into the problem of
understanding inelastic photon-hadron scattering,
which is partially accessible experimentally. However,
given the weight of evidence in favor of the quark
model, the problem in modern terms can be thought
of as one of determining the electromagnetic correc-
tions of these charged constituents, since the strong
forces binding quarks appear to be electromagnetically
neutral. In this paper, we present a calculation of the
lowest-order quantum electrodynamic corrections to
quarks bound in hadrons. In order to deal with the
strong interaction dynamics of the quarks, we work in
a model where the confinement of the quarks in a nu-
cleon is provided by an infinitely deep spherical scalar
potential square well. Inside the well, the quarks are
noninteracting in the absence of electromagnetism.
As regards the quarks, this approximation is
equivalent to the cavity approximation to the MIT bag
model. Within this model, the formalism is analo-
gous to that of the problem of a few electrons bound
in a strong Coulomb field. In particular, to lowest or-
der in a, the corrections are given by the Feynman di-
agrams in Fig. 1. In these diagrams, the double lines
represent the wave function and propagation function
of the quark in the confining potential. The propaga-
tion function, which has been studied extensively re-

cently, can be constructed with well known methods
that have been applied to the calculation of quantum
electrodynamic corrections to electrons in a strong
Coulomb field. ' Recent works have also examined
quantum chrom odynamic corrections with similar
methods. " ' In the remainder of this paper, we out-
line the calculation of the quantum electrodynamic
corrections in Fig. 1, and give the results. A detailed
account of this work will be given elsewhere.

In the model considered here, the quark wave func-
tions are solutions of the Dirac equation

( —i ct %+pm + V)Q„(r) =E„Q„(r),
where

0, r(R,
pV, , r)R,

in the limit where Vo ~. In the limit, this potential
is equivalent to the bag-model boundary condition

(i y r + 1)|ft„(r)= 0

at lr I
= &, and the limiting process provides a means of

resolving ambiguities near the cavity surface. The
spectrum consists of discrete eigenvalues in the inter-
vals ( —oo, —m ) and (m, oo). The eigenvalues for an-
gular momentum quantum number K are the values of

(b)

FIG. 1. Feynman diagrams contributing to the elec-
tromagnetic energy of a nucleon.
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z for which

(z —m)' j„(cR)= (m +z)' j„(cR), c = (z —m )', K+ =!K+ 2! 2, K = i/&— (4)

is satisfied.
The self-energy correction represented by the Feynman diagram in Fig. 1(a), which is the main part of the calcu-

lation, is given in coordinate space for a quark of charge ee by

AEsE= —i(e n/2m)J dx2J dxtf„(x2)n~„dz G(x2, xt,z)n~g„(xt)(e "—e ")/x2t

—hmJ~ dxyt(x)Py„(x) (5)

in the limit A ~ for the Pauli-Villars regulator
parameter. In (5), G is the Green's function associat-
ed with Eqs. (1)—(3), b = —i [(E„—z )2+i e]'i2,
Re(b) & 0, b'= —i [(E„—z) —A +i&]', Re(b')
& 0, Bm =m (n/vr) [—,

' ln(A /m ) + —', ], and X2t =!x2
—xti. The contour of integration over z is shown in
Fig. 2. In the case of massless quarks, for which no
mass renormalization is needed, this correction was
considered by Chodos and Thorn, ' and more recently
by Goldhaber, Hansson, and Jaffe." For massive
quarks there is an infinite mass renormalization which
is carried out here with the standard method employed
in calculations of the Lamb shift. The quark Green's
function has the important feature of separating natur-
ally into a free Green's function and a boundary-
dependent correction. This separation allows for a
straightforward treatment of the infinite mass renor-
malization, since the infinite part arises entirely from
the free term. It should be noted that in a self-energy
calculation with an arbitrary external potential, infinite
wave-function and vertex renormalization terms arise
and must be explicitly canceled against each other.
However, such terms are proportional to ( V) which
happens to vanish in this model. The calculation thus
divides into two parts. In the first part, the contribu-

!
tion to the self-energy from the free Green's function
is calculated with the aid of the explicit expression of
this function. This term was evaluated in three dif-
ferent ways. The most accurate method gave an es-
timated accuracy of 0.05%, and agreed with the other
two methods within their error bars. The results are
listed in Table I, second column.

To evaluate the boundary-dependent term, the cor-
responding part of the Green's function is written as a
sum over eigenfunctions of angular momentum. The
integration over coordinate angles in (5) is carried out
leaving a three-dimensional integral over the two radi-
al coordinates and z. The integration over z is indicat-
ed by the contour in Fig. 2; care must be taken with
the infinitesimal semicircle at the origin, because the
ground-state pole gives a nonvanishing contribution
for this segment of the contour. The calculation over
the rest of the contour was done with two methods
based on independent code. In the more accurate
method, when the angular momentum summation is
cut off, an analytic estimate of the remainder based on
the asymptotic form of the terms in the sum is added.
This summation requires up to several thousand terms
to achieve an accuracy of 1 part in 10 in the integrand
in the critical region where x

&
= x2 =R. The integra-

tions are then carried out numerically by Gaussian
quadrature.

e
TABLE I. Self-energy level shift in units of e2a/n. R.

C

E0 E
)

E

FIG. 2. The contour of integration in the complex z plane.
The dotted line that circles the branch point of the free
Green's function is not included in this calculation.

mR

0
0.1

0.5
1

1.5
2
3
4
6
8

10

Free

0.618
0.381

—0.130
—0.602
—1.002
—1.347
—1.892
—2.284
—2.775
—3.051
—3.221

Bound

2.452
2.440
2.427
2.466
2.538
2.625
2.800
2.950
3.167
3.304
3.397

Sum

3.070
2.821
2.297
1.864
1.536
1.279
0.908
0.666
0.392
0.253
0.176
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TABLE II. Calculated values for the functions ft and f2

2

I—
O

4J
C3 -I-
4
LLJ

O -2

I 2 5 4 5 6 7
mR

IO

mR

0
0.1

0.5
1

1.5
2
3
4
6
8

10

4.016
4.045
4.159
4.299
4.430
4.549
4.748
4.900
5.100
5.221
5.298

—0.428
—0.417
—0.375
—0.325
—0.279
—0.239
—0.175
—0.130
—0.077
—0.050
—0.035

FIG. 3. The self-energy for quarks of charge ee. The
solid line is the total level shift in units of e a/7rR, the
dash-dotted line is the free-propagator contribution, and the
dashed line is the remainder.

The results, shown in the third column of Table I,
have an estimated uncertainty of 1 or less in the third
place past the decimal. The free and bound parts of
the self-energy and the sum are plotted in Fig. 3 for
the range of quark masses 0 & mR & 10. We note that
the self-energy is positive for small masses and de-
creases smoothly toward zero for large masses. We
obtain a smooth behavior near m =0 with a limiting
value of /t. EsE ——(a~a/mR )3.070 at m =0. This result
is consistent with the original calculation of Chodos
and Thornts who obtained AEsE= (e n/7rR )2.4(3),
and with recent results of Goldhaber, Hansson, and
Jaffe. ' Current results by Baacke and Usler' for
m = 0 and m &0 based on methods described in Ref.
12 are in agreement with the results in Table I, third
column.

The vacuum polarization level shift represented by
the Feynmann diagram in Fig. 1(b), for a quark of

charge ee in the loop, can be obtained from the vacu-
um polarization charge density'

pvp(x)

where ter „are the solutions of Eqs. (1)—(3), n+
denotes summation over positive-energy eigenfunc-
tions, and n denotes summation over negative-
energy eigenfunctions. This charge density vanishes
identically as shown by the following considerations.
The eigenvalue condition (4) is invariant under the
simultaneous replacements z —z and K K.
Also, in the radial Dirac equation, the same replace-
ments exchange upper and lower components, with
the result that IPE,.I'= lq E, .I' and

g lye, .l'= g Iy E, .I'= X IOE,.I', (7)
5+pK Pl+, K ll, K

and so pvp(x) = 0.
The electromagnetic interaction energy between two

quarks of charge etc and e2e is given by

SEEM = ete2cl Jt (d xtd x2/x2t ) pt (xt )~„pt (xt ) p2 (x2)o"&2(x2),

corresponding to Fig. 1(c). This can be parametrized as

+EEM = &t&2(~/7rR ) (ft (~R ) +f2 (~R) ( o t
' o 2) i,

where ft and f2 are tabulated in Table II for quarks of
equal mass in the ground state.

The results give the lowest-order electrodynamic
corrections to bound quarks for the model considered.
It is important to understand these corrections, as this
extra energy must be taken into account with the
proton-neutron mass difference to infer the mass split-
ting between the up and down quarks. If the up and
down quarks had equal mass, then, since the self-
energy is proportional to the square of the charge of
the quark, a negative self-energy would be necessary
to decrease the energy of the up quark with charge

!
2e/3 relative to the down quark with charge —e/3 in
order to explain the sign of the neutron-proton mass
difference. The present results give a positive self-
energy for all masses considered, and since the inter-
action energy also increases the proton mass relative to
the neutron mass, the explanation of the mass differ-
ence in this model remains the standard one —that the
down quark is heavier than the up quark.
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