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Soliton Motion in the Case of a Nonzero Reflection Coefficient
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A method is given for finding the shifts in position of the solitons for the case of nonzero reflec-
tion coefficient. Expressions for boost generators in terms of scattering data play a prominent role
in the analysis. Phase-shift formulas which show the effect of the radiation component on the soli-
ton motion are deduced for the nonlinear Schrodinger equation, the Korteweg —de Vries equation,
and the sine-Gordon equation.
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One of the most important characteristics of non-
linear evolution equations solvable by the inverse
scattering method is that their longtime asymptotic
solutions are composed of two classes of entities,
namely, solitons and dispersive wave trains (radia-
tion). However, the rigorous analysis of this property
is a difficult mathematical task which is still far from
completed, ' the main difficulty being the description
of asymptotic solutions containing both solitons and ra-
diation. A particularly important question is to deter-
mine how solitons are affected by the radiation com-
ponent. This subject had already been considered by
Zakharov in 1971, but there was no decisive progress
until 1982, when Ablowitz and Kodama3 solved the
problem for the case of the Korteweg-de Vries (KdV)
equation. Nevertheless, the procedure used by these
authors, based on the finite-perturbation method, does
not seem easy to apply to other integrable models.

The purpose of this Letter is to provide a convenient
method for determining the soliton phase shifts in the

I

presence of radiation. The strategy is illustrated in de-
tail for the case of the nonlinear Schrodinger (NS)
equation. My analysis of this model is based on some
general properties of integral equations of the Mar-
chenko type and on the expression of the generator L
of pure Galilean transformations in terms of scattering
data. 5 At this point it must be noted that besides the
NS equation, several other relevant integrable non-
linear equations are invariant under the Galilean or
Poincare groups. In a series of papers I have recently
found the expression in terms of scattering-data vari-
ables for the "boost" generator E associated with the
sine-Gordon (sG) equation, the KdV equation, and
the massive Thirring model. As a consequence, the
analysis performed for the NS equation applies in a
completely similar form to these other models.

The inverse scattering method for solving the NS
equation9

(1)
is based on the resolution of the following integral
equations of the Marchenko type:

b~" (tx y) — ' cu'(tx +y +z)b2' (tx z)dz =to'(tx+y), bz (tx y) + to(tx +y +z)bt(txz)dz =0, (2)

where the kernel ~ is determined from the set of scattering data

S ( t) =
( k~

=
g~ + i q~, c~ ( t) = cj exp (4i' t ), j= 1, . . . , N; r ( t, k) = r ( k) exp (4 ik2 t), k E R I

in the form

co(t,x) = 2gcj (t)e ' +7r 'J r (t, k)ez'~dk.

The corresponding solution of (1) is given by P(t,x) = —b, (t,x, +0). As t + ~, P(t,x) evolves into a super-
position of N freely moving solitons with velocities v, = —4(J, and a radiation component which decays like
~t ~

'tz. My aim is to determine the parameters q~+-which characterize the asymptotic trajectories qj+-(t) —q~-+

+ v~t for the solitons as t + ~.
The NS equation is a Galilean-invariant Hamiltonian system and its corresponding generator of pure Galilean

transformations can be written as5

& = ——,J) x ~P~ dx = —Xln~ciBka (kj) ~

—(2vr) 'J) in~a (k) [Bk argb (k)dk, (4)
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where

tt (k) = II '. exp
k k~ I I t~ p(q) dq, Imk «0,
k —k. 2~" —

q —k —i0J J

p(k) = »(I+ Ir (k) I'), b (k) = r (k)& (k), Imk = 0.

From (4) and (S) the following alternative expression for K is formed at once:

)cf k, —k„K= —Xln + Xln
n ~j kj kn

(Sa)

+ Jt p (k) Bk argr (k) + PJt dq dk,
t

(6)

where P signifies principle value. We observe that for a pure one-soliton solution, P„,, the position of its center
is9 q (t) = (2q) ' ln[lc (t)/2q], and therefore K [p„,(t) ] = —271q (t).

As a consequence of the Galilean invariance of the NS equation we may define mass and momentum functionals
which have the following forms in terms of scattering data

~y)'dx =2g~, — OO QO OO

p(k)dk, P = —i Jt y'y„dx = —8/q g + —
Jt kp(k)dk.

J

According to these expressions the NS field appears as
a Galilean system composed of W particle with masses
2qj and velocities v~ = —4' (solitons), and a continu-
ous mass distribution with density —p (k)/2m and
velocity vg (k) = —4k (radiation). The meaning of
this spectrum of velocities associated with the scatter-
ing data can be understood through the asymptotic
analysis of the NS field as follows. Because of the
form of Eqs. (2) it is clear that the value of the NS
field P at a given point (t,xo) depends only on the re-
striction of the kernel t0 (t,x) to the interval [xo, +~).
On the other hand, if the evolution law of the scatter-
ing data is inserted into Eq. (3) the modulus of the jth
term in the sum propagates with velocity v, = —4('J,
while the group velocity of the Fourier modes in the

l

integral term coincides with vg (k) = —4k. Hence,
given arbitrary numbers xo and vo, as t + ~ the
restriction of co to intervals of the form I (t) = [x-o

+ (vo + e) t, +~ ) with e & 0 arbitrary, depends only
on those scattering data with velocity v such that
+ (v —vo) & 0. In fact, one may prove that the contri-

bution' to co due to the remaining scattering data has
a L2 norm on I- (t) which vanishes asymptotically as
t + ~. We are now ready to study the soliton
motion. To this end let us consider the I th soliton and
let us denote by p+ the parts of the NS field propagat-
ing to the right of the soliton as t + ~. With use of
our analysis above, the relevant kernels for character-
izing p+ through Marchenko equations (2), are

co+ (tx) =2X8(+ (vi —v~))cj(t)e ' +m. 'JI 0(+ [vg(k) —vi])r(t k)e ' dk,
j&l

where 0 stands for the step function. That is to say, the sets of scattering data associated with P+ are

S~(t) = (kj,cj(t),j such that + (v~ —v~))0; 0(+ [vg(k) —v&])r(t, k), k C R ). (8)

On the other hand, the sets of scattering data S+ (t) U (k, , c, (t) ) will correspond to the parts P'+ of the NS field
moving as t + ~ with velocity v such that + (v —v&) ~0. In other words, p'+ result from the addition of the
1th soliton to p+. Therefore, as a result of the dispersive character of the radiation component and the localized
form of the soliton, it is clear that as t + ~ the difference between the values of the functional K as P'+ and P+
must be equal to the value —2q, qI- (t) of K at the 1th soliton. In this way, by using identity (6) we obtain

~cl~ I k, —k,
ln + ge(+ (vJ —v/))ln

2 ll ll /l j~l kl —kj' J &(+ [vg(k) —v, ]) 2
dk.

k —kI

Hence the phase shift of the lth soliton as it interacts both with the other solitons and the radiation component is
given by

1 1 t in[1+ )r(k) ) ]qi+-—qi = sgn(v, —v2)ln, —
J~ sgn[vg (k) —vi] dk.

&l ~(
(10)
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The integral term in (10) exhibits the effect of the radiation component on the soliton motion.
The same analysis may be applied to other integrable nonlinear models for which the expression of a boost gen-

erator in terms of scattering data is available. Thus, for the case of the KdV equation

Bg = tt~ + 6llll»,

the spectrum of velocities associated with the scattering data is vj = 4qj, vg (k) = —12k; then the contribution of
the radiation to the soliton shifts turns out to be

1 & in[1 —(r(k) ~ ] dk (12)

which is in agreement with the result obtained by Ablowitz and Kodama. " Finally, for the sine-Gordon equa-
tion6

@« —@~+ sing = 0,

one finds that the scattering data have a spectrum of rapidities given by PJ= —]n(4~)t&~), P~(A. ) = —In(4~A. ~).
The soliton shifts due to the presence of the radiation component adopt the form

Aq™d=[2m(1+ e ')] ' sgn[P —P (Z)] " " d)i. (14)
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