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Critical Behavior near a Vanishing Miscibility Gap
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We report measurements of the osmotic susceptibility and correlation length for the pseudo-
binary mixture of guaiacol (o-methoxy phenol) plus glycerol-water as a function of temperature
and water content x [x —= weight of water/(weight of water plus weight of glycerol)]. This system
exhibits a limited two-phase region which vanishes for x (xo= 0.0137. We observed a smooth
transition from nearly Ising-type behavior for x & 4xo through a non-power-law regime to doubled
exponents for x = xo and saturating divergences with doubled exponents for x ( xo.

PACS numbers: 64.70.-i, 64,70.Ja

Many binary liquid mixtures have consolute critical
points which exhibit three-dimensional Ising-type criti-
cal behavior and exponents (y = 1.24, v =0.63). In
mixtures, where orientational entropy plays a role, one
often finds "reentrant" miscibility; the two-phase re-
gion exists over a temperature range TI & T & T„. In
this case the coexistence curve is a closed loop with
critical points at two temperatures, TI and T„. For cer-
tain reentrant mixtures, by variation of the pressure or
the concentration, x, of a third dilute component, the
temperature difference 4 T = T„—TI can be reduced to
zero at, say, x =xo, i.e., the closed-loop coexistence
curve can be shrunk to a point and caused to vanish. '

In the case of guaiacol (o-methoxy phenol) plus
glycerol-water, the dilute component is water which is
almost insoluble in guaiacol. Consequently, this ter-
nary system should be quasibinary with the water serv-
ing as an external field to modify the interactions.

Here we report on a light scattering study of the
evolution of the critical behavior in a series of mix-
tures of varying water content x [x = weight of water /

(weight of water plus weight of glycerol)]. We find
that (1) the osmotic susceptibility X and correlation
range g approach Ising behavior (y = 1.24, v = 0.63)
for x & 4xp, (2) non-power-law behavior occurs for
x & 2xo crossing over to power-law behavior with dou-
bled exponents as x xp, and (3) saturating diver-
gences with doubled exponents occur in the one-phase
region x & xo. %e find that the data are quantitatively
accounted for by a simple model of the Leung-
Griffiths type in which the observed behavior is at-
tributed to approaching the line of critical points
bounding the coexistence surface in a direction which
becomes tangential to that line asx xo. This picture
is consistent with the microscopic model proposed by
%'alker and Vause3 for hydrogen bonding mixtures
which transforms under the renormalization group
into an Ising model with an effective interaction
parameter depending smoothly on temperature and

other parameters in the initial model. Similarly, a
model involving parametrization of the critical tem-
perature has been found to account for the behavior
of reentrant nematic-smectic-A -nematic transitions in
liquid crystals as the smectic-3 temperature region is
reduced to zero. 6 The results presented here, howev-
er, are the first quantitative investigation of reentrant
behavior involving a system whose critical properties
are well understood.

In the guaiacol plus glycerol-water system, the two-
phase region appears at T = Tp ——63.06 + 0.2 C for
x = xp ——0.0137+ 0.0002 and is nearly symmetric about
Tp, with 5 T/ Tp= 0.100(x —xp) /, and ( T„+ Ti)/2Tp
=1—2.23X 10 3(x —xp), as shown in Fig. 1. The
critical concentration of guaiacol ~,~, corresponding to
the lower critical solution temperature, Ti(x), varied
linearly with x and was nearly equal to that for the
upper critical solution temperature for each x, being 51
wt. o/o at x =0.0137 and 47 wt. p/o at x =0.053. In our
experiments the guaiaco1 concentration was adjusted to
w, t + —0.5 wt. '/o for each value of x studied.

The intensity and angular distribution I(0,x, T)
(18' ~ 8 ~ 163') of light scattered by eleven different
samples with x & xo were measured as functions of
temperature for T ( Tt (x), and two samples with
x & xo were also studied. The apparatus has been
described in detai1 previously. The data for each
value of x and T were accurately fitted by the
Ornstein-Zernike form and gave g(x, t) to + 20 A and
S (x, T) —= I (6 = O,x, T), which is proportional to
x(x, T), to + 3'/o.

Figure 2 shows S and g vs t = (Tt —T)/Tt for four
samples with x &xo, corresponding to 4T values of
65.9, 26.3, 9.4, and 1.6'C. The values of S have been
normalized relative to toluene being unity. The solid
lines are fits to the model discussed below. Since mul-
tiple scattering occurred for 5 & 2 & 10, such data
were not considered.

Figure 3 shows data for two samples with x & xo,
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FIG. l. Upper and lower critical solution temperatures for
guaicol-glycerol-water mixtures vs water content where x —=

weight of water /(weight of glycerol plus weight of water).

where phase separation did not occur. The maxima
occurred in the temperature range from 63.04 to
63.08'C and the average was taken as To. The peak
values of 5 and g increased as x xp, and for
l T —Tp~ large, the behavior was a power law with dou-
bled exponents as shown.

All our results may be understood in terms of the
geometric picture of phase transitions developed by
Griffiths and co-workers. This picture includes
exponent renormalization caused by the manner in
which the experimental path approaches a line of criti-
cal points. ' " For a reentrant mixture, the coex-
istence surface in a space of thermodynamic fields,
such as T and the chemical potential difference 6
between guaiacol and the pseudosubstance (glycerol-
water), with pressure held constant, consists of a line
segment ending in critical points. Here we assume
that the addition of water allows us to control another
field, L, which does not alter the nature of the phase
transitions. Viewed in this three-dimensional space
(6, T,X), the coexistence surface is bounded by a line
of critical points, any one of which may be approached
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FIC. 2. Susceptibility S (open symbols) and correlation

length g (filled symbols) vs the reduced temperature differ-

ence t—= (Tt —T)/Tt from the lower critical solution tem-
perature TI, for samples having various temperature differ-
ences 6 T between the upper critical solution temperature T„
and TI The data co.rrespond to b, T =65.9'C (diamonds),
26.3 'C (inverted triangles), 9.4'C (circles), and 1.6'C (tri-
angles). The curves through the data are the result of a

model discussed in the text, and the limits of Ising ex-
ponents are also shown.

F1G. 3. Susceptibility S (upper two curves) and correla-
tion length g vs reduced temperature for two samples which
did not contain enough water to exhibit a two-phase region.
To is the average of the temperature at which the susceptibil-
ity reached its maximum value. The data for one run are
shown as open (T( Tp) and filled (T & Tp) triangles, and
those for the other run are shown as open (T & Tp) and
filled (T & Tp) circles. The solid curves are the results of a
model discussed in the text, and the straight lines corre-
spond to exponents equal to twice the Ising values.
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by a variety of paths. The two of interest here are (a)
the path in the plane tangent to the coexistence sur-
face but not parallel to the critical line and (b) the path
parallel to the critical line. Case (a) should result in
unrenormalized exponents and is achieved by fixing
the concentration of one of the species in a binary mix-
ture. 8 We believe an approach in the tangent plane
was maintained by adjusting the guaiacol concentration
to its (x dependent) critical value, and that the path
followed experimentally in each run by change of the
temperature with x fixed becomes tangential to the
critical line as x xp.

In an approach of type (a), the two independent
fields (here X and T) are equivalent asymptotically, 9

with a divergence of the type ~
T —T, ~

~ being of the

1

form )X —X, (
~ if X is varied at fixed T. In the

present case, these are presumably unique values of 5
and X on the critical line for each value of T, b, , (T)
and X, (T), respectively. The fundamental assumption
is that if the experimental path followed is such that
5 —5, ( T) = 0, at least asymptotically, the X depen-
dence of X will be of the form8 "~X,(T) —X~ ~ with

y = 1.24. To express this in terms of T, we identify X
with x and use data shown in Fig. 1, i.e., the measured
values of Tt(x) and T„(x), to obtain X, ( T) as

X, ( tp) —Xp

= [1—(1 —4I t )'t —2I't ]/2I 2A'.

Here tp= (Tp —T)/Tp, I'=C/A'= —0.88, and A and
C are defined by [T„(x)—TI(x)]/Tp ——2A (x —xp)' 2

and [ T„(x)+ TI (x) ]/2 Tp ——1 + C (x —xp), respective-
ly. Thus the susceptibility is given by

x(x, t, ) = x, {A'(x,—x) + [1—(1 —4I t, )' ' —2rt, ]/2r']-&+x,
where X~ is any background which may be present.

In the one-phase region, x & xp, Eq. (2) predicts that a saturating divergence with a maximum at T= Tp will be
observed if T is varied with x fixed. This agrees with our results, and the solid curves for the susceptibility shown
in Fig. 3 are Eq. (2) with Tp=63.06 C, x, Xp, and X~ adjusted to fit, and y fixed at 1.24. Xz was very small
( & 0.5). The same equation with no background, with y replaced by v (fixed at 0.63), and Xp replaced by (p, but
with x fixed at the values found fitting the susceptibility, provided a nearly perfect description of the correlation
range data as is also shown in Fig. 3.

x=x, [(1—rat)(att+t'+2rt'+sr't'+ . )]-~+x,, (3)

where b, t = [T„(x)—Tt(x)]/Tp and t = [Tt(x) —T]/
[Tp(1 —rht)2]. Since the data are confined to

t & 0.1, the terms of higher order than t play a rela-
tively minor role. As At 0, Eq. (3) thus predicts a
gradual transition to a doubled exponent. In the limit
I 0 Eq. (3) reduces to the result which would be
obtained by the expansion of X, ( T) about its

minimum and retention of only the quadratic term.
The full expression was used because it provided a
better description of the data.

Each of the eleven data sets for the susceptibility of
samples with x ) xp were fitted by Eq. (3) with Xp re-
placed by Xp(1+ btp) to allow for the temperature
dependence of the coupling between the critical fluc-
tuations and the scattered intensity. All the data were
consistent with b =0.7, and this was imposed. The
parameters adjusted for each run were Xp, Xz, and

Tt (x). Xz was small ( & 0.5), and the fitted values for
T&(x) equaled the observed phase separation tempera-
tures to within experimental accuracy. The results of
these fits are shown by the solid lines in Fig. 2, and the
results of fitting the correlation-range data to Eq. (3)
with v fixed at 0.63 are also shown. In this case no
background was included, and the values of T, (x)
found in the fitting of the susceptibility data were im-
Posed. Thus, only gp was adjusted for each run. For
the sake of consistency, the weak temperature depen-

dence (1+btp) was also imposed on the fits to the
susceptibility data for samples with x & xp. This im-

proved the fits but the values for Xp changed by less
than 30/0.

In addition to predicting the temperature depen-
dence of X and g, the model predicts that Xp and
should be the same for all runs except for the possible
analytic dependence on T& and x. We find this to be

the case with gp= (1.22 A) (1 —1.4tt), where tt =[Tp-
—Tt(x) ]/Tp. In the case of Xp, we extract the depen-
dence of the coupling between concentration fluctua-
tions and scattered intensity on T and x, which should
be (1+bt, ) (Be/Bg)', with b = 0.7. Here e is the
dielectric constant of the mixtures, and P is the mole
fraction of guaiacol. The results for Xp are then
described to within experimental accuracy by Xp
= 0.019(1+08t, ). Thus . all of the measurements are
accounted for by this simple model, which is a striking
confirmation of the simplicity and utility of the
geometric picture of phase transitions.
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