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A generalization of the Euclidean diffusion equation is proposed for diffusion on fractals on the
basis of a scaling argument, a renormalization-group theory for the Green's function, and numeri-
cal tests. Conjectures on the applicability to natural fractals (such as porous media) are presented.
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where J(r, t) is the total radial current. Define p(r, t)
as the average probability per site, i.e., M ( r, t)—rD 'p(r, t). Assume now that there exists a consti-
tutive relationship of the form

The wide interest in the rich variety of natural ob-
jects which are best modeled as fractals'2 has in-
creased further since the discovery of their unusual
dynamical properties. 3 6 The unusual forms of the
density of states on fractals, 4 5 their anomalous dif-
fusion properties, 6 and the scaling laws for conductivi-
ty 6 have all attracted intensive research.

In this Letter we address the issue of diffusion on
fractal structures. We go one step beyond previous
research by proposing a generalization of the diffusion
equation for Euclidean lattices to the case of lattices of
noninteger dimension (section 1). When we assume a
scaling form for the conductivity the equation can be
solved exactly; all the well-known scaling properties
follow4 6 while the information contained in the full
probability distribution is far greater. The equation
should provide a theoretical framework for transport
processes in, e.g. , porous media in natural environ-
ments (section 4).

To help judge the arguments of section 1 we present
a renormalization-group theory for the Green's func-
tion on simple fractals and numerical tests in sections
2 and 3, respectively. Throughout we emphasize the
shortcomings of the smooth scaling form assumed for
the conductivity and the solution of section 1 which
results.

(1)Scaling argument. —Consider diffusion on a frac-
tal object of fractal dimension D, embedded in space of
dimension d. Let M(r, t) be the probability at time t to
be within the hyperspherical shell between r and r + dr
centered on some origin chosen to lie on the fractal.
Conservation of probability requires that

AM(r, t)/Bt = dJ(r, t)/dr

J(r, t) = K(r) r Bp(r, t)/Br

where K(r) rD ' is defined as the total conductivity of
a shell of rD ' sites. Generally speaking Eq. (2) is an
approximation; it involves a product of spherically
averaged quantities rather than an average of a prod-
uct. Equation (2) in Eq. (1) yields the diffusion equa-
tion

t

ap(rt) = 1 8 K(r) D lap(rt)-
rD-' tir Qr

Equation (3) is a natural generalization of the spher-
ically symmetric diffusion equation in Euclidean
spaces. For the latter D is integer and K(r) = K is the
constant diffusion coefficient. To calculate K(r) we
exploit the equivalence of the electrical conductivity
problem and the stationary diffusion problem and con-
sider a fixed potential @ at the origin and a zero
(ground) potential at the shell at r. The total integral
resistance R (r) = @/J. Let us assume R (r) scales like
R(r) —r; then the conductivity at the shell r is
a(r) —[M /Br ] ' —. r' . From this we get
K(r) —r' a.(r) —r . We thus have

K (r) =Kr, 0 = D + ct —2.

(1) With use of Eq. (4) in Eq. (3) we get a diffusion equa-
tion whose exact solution is

& D/(2+8) ~2+ 8

K(2+0)'texp—( )
(2+0) 1

Dr (D/(2+ 0) ) K (2+ tI)'t

where the normalization f Dr 'p(r, t)dr =1 has been used.
0

From (5) we obtain the exact result

(r'(t) ) = [K(2+0)'t]'I"+'~r ((D+ 2)/(2+ 0) )/r (D/(2+ 0) ) (6)

and therefore we identify 0 as the exponent of anomalous diffusion6 and Eq. (4) (hitherto only a definition of 8)
as a scaling law. Wilke et al. have argued differently for the same law (they related the resistance to the effective
number of one-dimensional links between shells) and Guyer has argued for a similar law involving the coupling-
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constant exponent instead of the resistance exponent
n. From (5), p (0, t) —t t + 1 from which we find
the usual relation for the spectral (fracton) dimension
d =2D/(2+8). Equation (5) appears to agree with
the form suggested by Banavar and %illemsen' based
on a different argument.

It must be emphasized that the factors Kr» and
rD ' in (3) which yield (5) are the smooth envelopes of
the conductivity and number of sites in a shell which
can be highly singular functions of r in all lacunar'
fractals. Indeed, these singularities occur on all length
scales. In turn the solution (5) is anticipated to be the
envelope of an equally singular distribution p(r, t).

To illustrate the determination of K and 8 and to
analyze the Green's function in section 2, we need a
simple fractal on which calculations can be done exact-
ly. The obvious choice is the Sierpinski gasket which
has been the testing ground for so many ideas on frac-
tals. 3 5 9 '3 For this fractal we have calculated the
equilibrium current J exactly as a function of lattice
size using a decimation method'4 for the case of the
origin at the top triangle [Fig. 1(a)]. Now in steady
state, Eq. (3) yields a current as a function of K and 8;
by requiring this to equal J, both K and 8 are deter-
mined. For the gasket in d dimensions we find in this
way 14

2dW
D(2+ 8 D) (d+ 1)—

where Wis the conductance of a bond.
(2)Renormalizati on group theo-ry for the Green 's

function In .c—ontrast with previous studies of the
Green's function for the diffusion equation on the
Sierpinski gasket9 "' we deal with explicit spatial
coordinates, in terms of which theory is developed.
For the purpose of analysis, it is essential to choose a
coordinate system which reflects the dilatational in-
variance. For the triangular gasket the appropriate
coordinate system was suggested in Ref. 13. In a
gasket with 3" triangles, the triangles are labeled (see
Fig. 1)

n —1

i = X ak3", ak=0, 1 or 2.
k=o

Given an inner length scale, the diffusion occurs by
hopping from site to site with a diffusion equation
W 'Q~ = —4Q~ + X» Q» where q runs over four
nearest-neighbor sites. By summing over the three
vertices that belong to a given triangle we have derived
the equivalent equation for triangles

P, = W(X,.P, —3P, ) (8)

where P; is the probability to belong to the ith triangle
at time t. The factor of 3 reflects the fact that triangles
have three neighbors rather than four.

Consider now the Green's function G;tj"1(t), which
is the probability to be at triangle i at time t with initial

(a)

FIG. l. (a) The Sierpinski gasket and the coordinate sys-
tem used here. (b) The four triangles that are explicitly con-
sidered in the renormalization-group theory.
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conditions P;(0) = 5;~, on a gasket of 3" triangles.

G~& "1(t) is the Laplace transform of the Green's func-
tion Gg;~(E) for the diffusion or Schrodinger equa-
tion. We wish to develop a fixed-point equation by re-
lating it to Gt," Jt)(Pt) To do so .we pick four neigh-
boring triangles on the (n —1) lattice, denoted by
i, k, 1, m [see Fig. 1(b)]. On the (n) lattice each of
these consists of three triangles, i =3i+a, etc. , with
n=O, 1, 2 [Fig. 1(b)]. From Eq. (8)

[3—(E/W)]G;, ~" (E) = X„Gk" (E)+h„". (9)
We pick now an initial condition on a triangle j [which
on the (n) lattice is composed of jo, jt, j2], and derive
the equations for G;t"J) = gpG, J, subject to P; (0)
= 5,& . With the notation X = 1 —e, e =E/ W, and

5, J = g& 8; J these read

) G'"'(.)l2,J~
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FIG. 2. Typical plots of p(r, t) vs r along the edge of the gasket with 5-function initial conditions at the top, and W=0.25.
(a) t = 3000, r in dimensionless units, numerical experiments plotted with crosses, analytical predictions with open circles. (b)
t = 25 000, otherwise identical to (a). Notice that the analytical predictions have no free parameters.

with similar equations for G; J (e) G; ~ (e), Gk("~ (e), and G ", (e). Multiplying Eq. (10a) by (1+A.) and ad-

ding to Eq. (10b) we find

(X +A. —1)G; «) (e) = (1+A.) [G; ~) (e)+ G; J (e)]+ G, " (e)+ (1+A.)5;, +St, ,

where Gi,j,—= g Gr J . Analogous equations are easily found for G;(",) (e) and G;() (e). When these three equa-
tions are all summed we find

=3(1+A.)G; " ' (e')+X G " ')(e') (i3)

where q are nearest neighbors to i.
To compare with the diffusion equation approach,

we consider now Eq. (13) for i and j which are far
apart. We then have G~I,

" ' = G;," ' and also
G, " = G, " = G3;") . Accordingly we finally find

G,',") (e) = —,
' (5 —e) G,'" "(5e—e') (l4)

On the infinite lattice, since boundary effects are
immaterial, we expect the Green's function to be the
fixed-point function G ~(e) of the rescaling procedure
(14). By considering the limit e 0 we find that'4 for
large times Eq. (14) predicts that

G3, »(r) = —,
'

G, , (—,
' r). (15)

Although this equation is derived for the gasket em-
bedded in d=2, its generalizations to higher d are
available and will be reported elsewhere. '

The crucial point now is that Eq. (15) can be used
on the one hand to support the validity of Eq. (3) and
on the other hand to expose its shortcomings. Firstly,

%e note that 5; 5~ =35;~; the key point is that the

system (12) has the same structure as a sum of sys-
tems (9). By denoting (A. —

A.
—3) by (3 —e'), we

have

G (n) (e)'s ~s

it is apparent that the solution of Eq. (3), i.e., Eq. (5),
is a solution of the fixed-point equation (15). To see
this pick, for example, j=0 (the uppermost triangle)
for which Eq. (15) reads G3;(t) = —,

' G;( ,' t). A solu-—
tion of this equation [together with G;(t=0)=5;]
when expressed in terms of the distance r in the
embedding space which satisfies r ~ j'"2 '"3 is

G(r, r) = Ct exp( —r'" '" /C, r)/r'"' '"'.

Remember that for the example at hand3 D =ln3/ln2
and 0 =ln5/ln2 —2; thus we see that Eq. (16) agrees
exactly with Eq. (5). On the other hand we realize
that Eq. (15) has information on triangles i, j and 3 i,
3"j only. Therefore an analytic solution like (16) for
any k, l~3"i, 3"j should be interpreted as an envelope.
To appreciate these points further we turn now to
some numerical simulations.

(3)Numerical simulations We have s.o.—lved numeri-
cally the random-walk problem [Eq. (8)] on the Sier-
pinski gasket with three sites with delta-function ini-
tial conditions at the top triangle. We have tested the
predictions of Eq. (5) by (i) plotting (see Fig. 2) the
numerical values of p(r, t) along the edge of the gasket
together with the right-hand side of Eq. (5), using the
theoretical value of IC, Eq. (7). Notice that Eq. (5)
contains no free parameters. As anticipated theoreti-
cally, Eq. (5) appears to be an envelope to the numeri-
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cal results which display the expected nonanalyticities;
these have interesting self-similar properties which will
be discussed elsewhere. 4 (ii) We plotted ln[p(r, t)/
p(r, 0) ] vs [r + /t], for many values of r and t. Satis-
factory straight lines are found. '4 (iii) Lastly, we test-
ed the scaling Eq. (15) at many general (i,j) sites at
various times. The scaling prediction is confirmed. '4

(4) Conjectures. —Given a fractal of dimension D, be
it random or not, we conjecture that when the resis-
tance envelope scales like r the diffusion problem
should be describable by Eqs. (3) and (5). Similarly
we suggest that in natural materials, such as porous
media, a link between the scaling of conductivity and
the existence of a diffusion equation like (3) should be
sought experimentally.
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