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Pair Interaction from Structural Data for Dense Classical Liquids
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We show that deduction of the pair interaction from structural data for simple liquids is feasible
even under the triple-point condition. We use an iterative predictor-corrector method based on the
modified hypernetted-chain equation and on simulation. We show that simulation can give enough
accuracy to test inversion schemes.
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The determination of the interatomic interaction in
the condensed phases of matter is of fundamental im-
portance and this explains the attention that in the
physics of liquids has been devoted to the so-called in-
verse problem, i.e. , the deduction of the interatomic
interaction starting from measured structural data as
obtained from scattering experiments. It is believed
that in a monatomic liquid, there is a one-to-one
correspondence between the structure factor for densi-
ty fluctuations S(q) = (p~p ~)/W, where pz is the q
component of, the microscopic density fluctuation, and
the pair interaction u(r). If in the system many-body
forces are present, as in general they are, this v(r) has
the role of an effective two-body interaction and it will

be state dependent.
Starting with the pioneering work of Johnson,

Hutchinson, and March, ' this inverse problem has a
long history but it is still in an inconclusive stage. The
theoretical methods that have been used have not
been seriously tested and widely different results have
been obtained from the same data. 2 It has become
evident that scattering data of very high precision, at
least of order of 1'/0 in absolute accuracy, are required
over a wide range of momentum transfer q. It is clear
that what is an asset in the direct problem, i.e. , the in-
sensitivity in a dense fluid of the radial distribution
function (rdf) g(r) to the exact shape of u(r), works
against us in the inverse problem.

The simulation of model fluids is ideally suited to
test whether a theory is adequate for this purpose: Us-
ing the rdf obtained from a simulation one should be
able to recover the interaction used in that computa-
tion. However, since the simulation results are statist-
ical in nature, this is a meaningful test only if the sta-
tistical noise of simulation is small enough. The pur-
pose of this work is twofold. On one hand, we show
that simulation results can give a rdf accurate enough
to test theories. On the other hand, we show that an
inversion scheme that has been proposed by one of us
and applied to a related problem in the Jastrow theory
of Bose quantum fluids5 is successful in the extraction

of the pair interaction with good accuracy. This
scheme is based on the modified hypernetted chain
(MHNC) equation and on simulation. We find that
methods recently used are inadequate.

We have considered two model systems. The first is
the Lennard-Jones (LJ) fluid, v (r) = 4e [(a/r) '2

—(cr/r)6], a prototype of a simple dielectric fluid
under triple-point conditions po-3=0.84 and kaT/~
= 0.75. The second is a model potential vA~ for alumi-
num. Here we are not interested in the extent to
which this model is realistic for Al, but it was chosen
because v„, is very different from the potentials of
simple fluids; it has strong structure at short distance,
followed by many small oscillations at larger distance
(see Fig. 2 below).

For the LJ system we have performed three in-

dependent runs, one molecular-dynamics simulation
of 6800 integration steps with a cutoff on u(r),
r,/a=4, and two m-olecular-dynamics simulations of
16800 integration steps with r,/o. = 2.5. All our simu-
lations are for 864-particle systems. The g(r) provid-
ed by these runs have typical differences of 0.3O/o for
r/o— 1 becoming. of order 0.01O/o at larger distances.
When g(r) is obtained by averaging over subsets of
1600 integration steps, fluctuations in g(r) of order
1/o are observed. The effect of these fluctuations of
g(r) in the inversion problem is studied by the MHNC
equation. 9 This starts from the formally exact relation

Pu ( r) = g ( r) —1 —c (r) —ln Ig ( r) ) + E ( r/u ), (1)
where P= (kaT) ' c is the usual Ornstein-Zernike
(OZ) direct-correlation function, and E(r) is the so-
called bridge function which is known only as an infin-
ite series in a cluster expansion. The HNC approxima-
tion3 consists in the statement E(r) = 0, whereas the
MHNC one corresponds to writing E(r) =EHs(r, 7l)
where EHs(r, q) is the bridge function of hard spheres
at a suitable packing fraction q = mpd /6. Usually (1)
is solved with respect to g(r) for a given v(r). How-
ever, if we know g(r) of a certain system then (1)
gives pv(r) if we have a criterion for choosing 7l This.
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FIG. 1. Potentials from inversion procedure for the LJ
system. Solid line, exact PuLr, open triangles, Pui3 from
Schommers's procedure; crosses, open circles, open squares,
and solid triangles, Puo, Pu5, Pu9, and average Pu over itera-
tions 8—12 of our inversion procedure (r"= r/o). .

can be obtained by solving the equation

t)EHs(r n)d'r [g (r) —g„s(r, v]) ]
' = 0, (2)

where gHs is the hard-sphere rdf. This condition'
derives from an extremum condition for the free ener-

gy in the MHNC approximation. Both gHs and EHs are
known quantities from simulation and parametrized
forms are available from Verlet and Weis. " Then (1),

(2), and the OZ relation form a closed set of equations
which can be solved for Pv(r). '2 The Pv(r) extracted
in this way from the simulation with a cutoff r, =4o- is
plotted in Fig. 1 where it is called pvp(r). It is clear
that MHNC, which is considered to be one of the most
accurate integral equations, is not adequate for the in-
version procedure: The minimum of Pv is underes-
timated by 30% and a spurious additional structure ap-
pears at larger distance. In spite of this result, the
MHNC can be used to see how much the extracted pv
is modified when rdf s coming from different simula-
tion runs are used. Even if MHNC is approximate,
these deviations should be essentially independent of
this approximation. With use of the rdf of the three
long runs, the extracted pv show deviations that at
most are of order 0.02—0.04 and almost no change((( 1'lo) in the position of the minimum of pv.
These deviations increase by a factor of 3 if the shorter
runs are used. Similar results are obtained for the Al
model potential studied at density p = 0.0527 atomlA
and T= 1051 K. vA, is cut off at r, = 8.81 A (see Fig.
2). Thus, first, the potential obtained by MHNC
reproduces only the main features of the exact v(r),
and, second, the rdf calculated from independent runs
of 2000 integration steps [or 2000 moveslparticle for
Monte Carlo (MC) simulation], can be accurate
enough to test theories for the inversion procedure.
The uncertainties on the extracted pv from these rdf
will be 0.04—0.08 and the positions of the extrema will

be precisely obtained if an inversion procedure better
than MHNC is used.

Other integral equations like Percus- Yevick and
Born-Green (BG) are known to give very poor
results, 2 as does a modified BG equation, '3 which in-
cludes the lowest-order correction to the superposition
approximation. Mixed integral equations'4 have been
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FIG. 2. Potentials from our inversion procedure for Al. Solid line, exact pu~l, circles, puo, crosses, pui', triangles,
Pu2 [ r' = r/ (4.234 A) ].

452



VOLUME 54, NUMBER 5 PHYSICAL REVIEW LETTERS 4 FEBRUARY 1985

used to extract pv but their accuracy has not been test-
ed and, in any case, have serious difficulty in the treat-
ment of liquid metals. This permits the conclusion
that no integral equation for g(r) is accurate enough
and of wide applicability for the extraction of pu for
very dense systems.

Our approach to the inverse problem is based on an
iterative predictor-corrector method. As a predictor
we use the MHNC equation as discussed above. Thus,
given a g(r), we obtain a potential which we call
Pvo(r). This, however, is now considered only as a
first estimate of the interaction. As a corrector we per-
form a simulation with pvo(r). This generates the

I

"exact" rdf go(r) corresponding to pvo(r). The
difference Ago(r) =g(r) —go(r) is nonzero because
the prediction is not exact, but now the predictor can
be used again to obtain a new estimate Pvi(r) of the
interaction and the procedure can be repeated until the
difference b,g;(r) is small enough, in this case the ac-
curacy being limited by the statistical fluctuations of
the g; (r) obtained by simulation, i.e., by the length of
the simulation. MHNC can be used to obtain these
subsequent estimates pu; of the interaction by approx-
imating E(r/u) for the unknown v(r) not with EHs
but with E(r/u; i), which can be extracted from (1)
when g; i (r) (and the corresponding c; i) is known.
This gives

pu;(r) =pu; i(r)+g(r) —g "'i+»lg(r)/g, "-'i 1+(2~) 'p 'Jtd'q e"'&~ '(q) ~i 1('q) j—.

where the OZ relation has been used to express c(r)
in terms of S(q). This iterative scheme requires no a
priori knowledge of v(r) and no other information
than g(r) and its Fourier transform S(q). '2

A similar iterative predictor-corrector method has
been proposed for the first time by Schommers but
his scheme is based on the assumption that the func-
tion y(r) =g(r)exp[pv(r)) does not change when
u(r) is varied. We have tested Schommers's scheme
using g (r) for the LJ system at per 3 = 0.84 and
ka T/a =0.75 and we find that it does not converge to
the correct answer. We have followed that scheme for
thirteen iterations and for the last three iterations the
deviations Ag = g —gi were below the statistical errors
of the simulation so that the computation was con-
sidered as converged. As can be verified in Fig. 1,
pu i3 is very different from the LJ potential. This
result is not too surprising because y(r) has a signifi-
cant variation when v(r) is varied.

On the contrary our predictor-corrector scheme
based on MHNC has a good convergence property.
First it was applied to the LJ potential with our simula-
tion result with r, = 4o. as input g(r). A cutoff of v; at
3o. was used for the first six iterations after which the
computation could be considered as converged. The
resulting pv6 is in good agreement with the LJ poten-
tial (see Fig. 1) but the minimum is overestimated by
0.04. In order to see if this could be due to the cutoff
used, six additional runs have been performed with
r, =4o. The pv;(r) obtained in these last runs oscil-
late around the correct value with deviations—0.05—0.15 which is what is expected from the effect
of the statistical error on the simulated g(r) (runs of
1200 moves/particle have been done and 2400
moves/particle for the last two iterations); pv;(r) for
the last five iterations can be considered as indepen-
dent estimates of the potential so that as a final predic-
tion of the potential5 we take the average of these last
five iterations. At distances r & 2.5o. where puLJ is
less than 0.02, pv, show some small oscillations

around zero.
Our method converges very well, too, in the case of

the Al potential model and we have performed four
iterations. Some of the results are shown in Fig. 2.
Positions of the extrema of pv are reproduced with
very high accuracy and the values of pv at these extre-
ma are reproduced with an uncertainty —0.08 which
again reflects statistical uncertainty of the simulations.
Notice that now the positions even of very weak struc-
ture in v are stable under iteration and do not show
the erratic behavior of the LJ case. This seems to
make possible a discrimination between weak structure
in v due to noise from the real ones.

In conclusion we have demonstrated that inversion
of structural data even under the triple-point condition
is feasible with our iterative predictor-corrector
method (the application of the method to the LJ sys-
tem at po. = 0.65 and kaT/a = 1.036 gives also excel-
lent results). However, the result is meaningful only
if the starting structural data is accurate enough. The
method shows a very fast convergence even for highly
structured potentials. Positions of the structures in
v(r) are very easily obtained, whereas the accuracy of
the absolute values is a function of the length of simu-
lation. At the same time we have shown that simula-
tions provide structural data that are accurate enough
to test inversion schemes. On the basis of this analysis
we conclude that the deduction of the effective inter-
particle interaction for real fluids will be feasible when
the experimental scattering data of the higher quality
allowed by the new radiation facilities become avail-
able.
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