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Nonlinear Landau Heating by Ion-Bernstein Waves
in Magnetically Confined Fusion Plasmas
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It is shown that during ion-Bernstein —wave heating experiments, nonlinear ion Landau damping
absorbs efficiently the incident Bernstein waves in present-day tokamak and tandem-mirror plas-
mas. Further, this nonlinear absorption will dominate absorption by minority (impurity) ions.

PACS numbers: 52.20.Gj, 52.35.Mw

Heating of ions by absorption of ion-Bernstein
waves' 3 at the low ion-cyclotron —harmonic frequen-
cies has been advocated recently by Ono et al. 3 Effi-
cient ion-Berstein —wave heating was observed in the
Nagoya Japanese Institute of Plasma Physics (JIPP)
II-U tokamak where H+ majority and 4He + minority
ions were used. 4 Thus, near the center of the plasma,
column absorption should occur when f= 3f,„„while
2f= 3f,H. However, the heating results were found to
be independent of the 4He2+ minority ion concentra-
tion. Nevertheless, wave absorption by impurity ions
(C6+,08+ ) may have occurred. Bernstein-wave—
heating results were also obtained in the Princeton
ACT-1 low-tetnperature toroidal device.

In this Letter it is shown that in present-day experi-
ments nonlinear ion-cyclotron (Landau) damping
would absorb the wave energy at 2f= 3f,H, even in
the absence of any minority ion species. Furthermore,
in the presence of minority (impurity) ions, the non-
linear absorption is greatly enhanced. A further ad-
vantage of nonlinear absorption is that it would allow
the use of ion-Bernstein waves to heat the plasma at
to/co„= 1.5 or 2.5 in the central cell of tandem-mirror
devices where the magnetic field is radially uniform.

The mechanism proposed here is the self-interaction
of a Bernstein wave when the conditions 2to= mco„(0) are satisfied, where m ~ 3 corresponds to
odd integers. 6 In particular, in the present paper the

!
cases of m=3, 5 are examined in some detail. The

where to (k) and co" (k") are the frequencies and
wave vectors of the two Bernstein waves, m is an in-

teger, and the beat wave co'(k') ("quasimode" or
"virtual wave") resonates with particles (where
to' =co + co", k' = k+ k"). In the case of t0» c0",
co & co', one has the case of decay instability which was
observed experimentally for electron Bernstein waves
by Chang and Porkolab. s For plasma-heating pur-
poses, of greater interest is the self-interaction of ion-
Bernstein waves co" (k" ) = —t0 (k), k" = —k, and
2' ——m co„. For Bernstein waves for m = 3,
k„r„=1.5—2.0 (the precise value depends on k~~),
ki =2k' = (3 4)/r„and t—herefore co'/ki = (T/
mt)' [here r„= (T/m;)' to„ is the ion gyroradius].
Therefore, we expect interaction and heating mainly
with the bulk of the ion distribution.

The nonlinear equation governing ion-Bernstein
wave propagation is

&Ek Lk;-!E'!'Ek
tlx " "

Bett (to, k)/Bk,
(2)

where uk= e, /(t)sit/tlkt) is the linear spatial damp-
ing rate of the wave co(k) in the x direction, and where
the nonlinear matrix element is given by6 7

relevant selection rules are given by a generalization of
wave-wave-particle scattering in a magnetized plas-
ma"

kll )v II ntto«' ~

Here

m to„ to~, Ir exp[ —(c0' —m oi„)'/(k
I~
v„)']

npKT;

3 —BC/D
,~ [(c0/to„—s)' —1][(to/co„—p)' —1]

(3)

g = J dg(rig/ri() J, (z)J (z) Jp (z")J, ~(z"), B = Jt dg(kg/'ting) Jp(z) J~(z') Jp ~(z"), C = B(P s),

D=J dg(Qg/tip) J2(z') = —2I (b' )e b, g(g) =exp( —g/2), $=2vi/v„, v„=2Tt/mt,

b = k~r„, z= k~v~/to«, z'= ki vi/c0«, z"= ki vi/to«.
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To analyze the self-interaction of the wave co(k), we set E „=—E„, and Eq. (2) may be rewritten as follows:

BEk/Bx + ~k+k+ 0 (x) I &g I'&g = o.

In a uniform plasma gp = —L„„„/(Be&/Bk~), and in a radially varying magnetic field
t

m~cr ( —V) ~p( exp( —x'j(') —XQ(x) = —= gp exp
2k~~ v~; 4~ ~; (Beg/Bk~) npK T;

where

'= I „(0)j(2k() „Ls)= /(k p „L~).

(4)

(5)

Here we expanded the magnetic field as cu„(x) = cu„(Q) (1 —x/Ls); x = 0 is the resonant layer, L~ is the magnetic
field gradient scale length in the x (i.e. , radial) direction, and we kept the x dependence only in the exponential
term. In a tokamak Ls= R, the major radius, and Eq. (5) is valid for x~ R. For ion-Bernstein waves
v„« cu/k~~, k~~ && k~, v„&& Icu —men„l/k~~, so that electron Landau damping and ion-cyclotron damping are
weak. In a plasma with a Maxwellian distribution of electrons and ions the mode (~, k) is determined by the
dispersion relationship e~ (cu, k) = 0, where'2

2o) I' b.
(6)

O)ce k e) k A. D; q (=) ~ —I ~cJ.

~here the summation over j includes all ion species, j= i designates the majority ion species, j~i is the minority
species, H~= n~Zg/n;, ZJ is the ionic charge state of ion species j, and typically Z;=1 so that 0;=1. Further,
I ~= I&(b;)exp( —b;), lI(b;) is the modified Bessel function of order land argument b; = k~r„, and the remaining
notation is standard. One can show that Be~/Bk~ in Eqs. (2) and (5) is given by

Beg/Bk ~ = (2/k ~ ) (co~~;/cu,
2 ) Y,

where
' $/2

Y= /Hi
b(

'[r, , (b, )+r„,(b, ) —2r, (b, )1r, b, —r, b, — ', ', ,' ' +s,
I=I cg

and where for i = i, 0~ ( b~jb;) 'i =—i Here.
5 = (1 + cu' /o)' )(1+ b )(o)'/cu' ) = 10

is small and may be ignored.
The solution of the nonlinear Eq. (4) can be obtained by the pseudopotential technique outlined by Porkolab

and Goldman in connection with the upper-hybrid soliton problem. 9 First consider the case of a uniform magnetic
field. Ignoring temperature gradients, and assuming EI, =p(x)'i exp(io), one can inte. grate Eq. (4) and obtain

IE. I'exp( —2 ln„lax)E x 1+ (QplE, I'/~~) [I —exp( —2lo. p, Ihx) I
'

where Ax= (a —x) & 0 is the total distance of pro-
pagation in the radial direction, and E, = E(a) is the
amplitude of the launched wave at the plasma edge.
For a linearly weakly damped pump wave 2b, xlnI, I« 1 (i.e., weak electron Landau damping is assured
by taking 3 & co/k~~v„), and one may expand the ex-
ponential factor:

IE(x) I'/IE. I'= (i+2&x(l~, l+ IQpllE. I') I

Thus, the pump-wave power decreases to 1/e of its ini-
tial value when

2xx I0, I IE. I' & 1.72.

The pump-wave electric field I E, I may be estimated

by considering electrostatic wave packets launched by
an antenna of surface area A perpendicular to the x
direction. The power carried by the wave packet is
given by

where 5 is the cross-sectional area of the wave packet
normal to the x direction. When we combine Eqs.
(5),(8), and (9) the condition for pump depletion is
given by

m'i 10' b; I VI(P/S)bx ) 1, (10)
2.75I' k~~ &~ flo T Y
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where P/S is given in watts per square centimeter, T;
is in electronvolts, and all other quantities are in cgs
units. Consider the center cell of a present-day
tandem-mirror device such as the Livermore Tandem
Mirror Experiment —Upgrade (TMX-U), and take
k~~ = (77/150) = 0.02 cm ', f=4.5 MHz, f/f« = 1.5,
T; = 225 eV, and T, = 50 eV, and consider solely D+
ions. The solution to Eq. (6) is b; = 4.0. A numerical
integration of Eq. (3) with m = 3 and k~r„——2 gives'0
V=0.08. For a uniform central plasma region of
2b, x = 15 cm, condition (10) for pump depletion is

i5/2 (

it of integration x = a with x = ~.
The total absorption across the plasma cross section

(bx=2a) is

IE( —.)I'/IE. I'= [1+2~'/'q Ig IIE I
I-

Thus, the critical power for pump depletion is
2m'/ (; IQOI IE, I

& 1.72. With substitution for (;, Qo,
and I E, I in terms of the incident rf power density, the
threshold for pump depletion is

F10'»t La I
V

I (P/S) ~1,
rP( 0)n~ T( Y

(12)

p W 2 T(

S cm2, 225 eV
no

2x10

where the ion temperature is normalized to T; = 225
eV, and the density is normalized to n;=2X10'2
cm 3. The evaluation of Y is dependent on the value
of k~r„chosen (i.e., to k~~). For the present condi-
tions one obtains Y = 0.13, and hence one finds
P/S =0.05 W/cm2. If we consider an antenna of
length 150 cm and height 10 cm, we have A = 1.5 x 103
cm2, and for an effective area of S = 2A (to allow for
wave spreading parallel to the magnetic field) the criti-
cal power is —0.15 kW. Thus, for a typical injected rf
power of 100 kW or more, this threshold is always ex-
ceeded. At a density of no

——1 x 10'3 cm 3 and T; = 1

keV, the critical power density would remain near 8
W/cm2, or 24 kW total power for an effective cross-
sectional area S = 2A = 3 x 103 cm2 (spreading by
more than a factor of 2 in TMX-U is not expected
since the axial magnetic field gradients beyond the an-
tenna reflect the wave packets).

Let us now consider a form of Q(x) given by Eq.
(5), which may be relevant to a tokamak or a bumpy-
torus geometry. Taking the trial solution

Ek=p(x)' exp[io. +x/2g ]

one finds that a. = const and

dp/dx+ 2p(n„+ pgo+ x/(') = 0.

This equation can be integrated by first changing vari-
ables to Z= 1/p. Then the integral can be performed,
and after inversion of variables the result is

IE(x) I'/ IE.I'

= [I+a. /
~; IQOIIE, I [1—erf(x/(;)]] ', (ll)

where erf(x/(;) is the error function, and where the
linear damping (n„) has been neglected. Note that
significant nonlinear interaction occurs only where
x2 & ( « a, and therefore we replaced the lower lim-

E (x)2/E (a) 2 = exp [ ——,
'

where P/S is again measured in watts per square cen-
timeter, T; is measured in electronvolts, and other
quantities are in cgs units. As expected, the absorp-
tion increases with L~ ——R, the major radius of the
tokamak. For the Nagoya JIPP-II-U parameters, 4

namely B= 1.8 T, no
——2 x 10t3 cm 3, R = 91 cm,

T, =300 eV, T, =700 eV, f=40 MHz, k~~ & 0.05,
and co/cu„=1.50, one finds b;= 1.50, Y=0.27. Nu-
merical integration'o of Eq. (3) gives V= 0.02 for
m =3, and Eq. (12) yields P/S & 35 W/cm2. Taking
an antenna area of A = 300 cm2, for S = 2A one ob-
tains a critical pump power of P = 20 kW, which is
within the experimental value of P & 100 kW, and is
in reasonable agreement with the apparent threshold
power observable in Ref. 4, Fig. 4.

Wave absorption in the case of f/f„(0) = 2.5,
m = 5, was also examined. Taking f= 80 MHz for the
Nagoya JIPP II-U parameters one would obtain
k~ r„——2.0, Y= 0.3, V = 0.02, and the threshold
power would remain nearly the same as for the case of
m = 3.

In the presence of impurities (minority species) with

Z&/m, = Z,/2m;, k~r«would increase significantly and

t)e(t/Bkj (i.e. , Y) would greatly be reduced. These ef-
fects would result in significant reduction of the criti-
cal power for nonlinear pump-wave depletion. Furth-
ermore, because of their heavier ion masses
(&= k~~u,~L~/cu, the width of the impurity-ion cyclo-
tron resonance is considerably smaller than (;, that of
the majority (hydrogen) ions. Therefore, for suffi-
ciently strong electric fields complete nonlinear pump
depletion may occur before the wave arrives at the
minority cyclotron absorption layer. To quantify these
concepts, the nonlinear electric field, Eq. (11), should
be compared with that attenuated by linear ion cyclo-
tron damping by impurities, namely

E (x)/E (~) = exp( —2Jt kiM dx),

I

where kIM=elM(impurity)(Be&/ 8k~) '. After in-
tegration one obtains

vr [I (b~ )HL&/r„b / Y] [1—erf( (x/(; ) (m~/m; ) '/ ) ] ], (13)

where HJ = nj Z, /n;, or in terms of Z,«, the effective ion charge, 0~ = Z, (Z,« —1)/(Z~ —Z,«). The predictions
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of Eqs. (11) and (13) were compared for several cases
of interest for the JIPP II-U parameters. For example,
assuming nH, /n, =0.014, one finds b; = 2.0, Y=0.02,
V = 0.06, and at x/(; = 1.0 nonlinear pump depletion
[Eq. (11)] requires I'/S & 0.06 W/cm2, a very low
value (i.e. , for A = 2S —600 cm2, I' = 36 W).
Therefore, in the experiments where P & 10 kW, non-
linear absorption will occur at x/(; & 1. On the con-
trary, at x/(; = 1.0 linear damping [Eq. (13)], would
produce E (x)/E (a) = 0.98, or only minor wave-
energy loss (even though at x 0, complete linear
pump-wave absorption would result). As a second ex-
ample, we examined the case of n c6+/n, = 0.014
which would yield Z,ff=1.42. The result was even
more dramatic than for He +. In this case again com-
plete nonlinear pump depletion resulted at x/(; & 1.0
at power levels I'/S & 1 W/cm, whereas linear ab-
sorption at this position was completely negligible
since at x/(; = 1.0, (x/(;)(m//m;)'/ = 3.46. Similar
results follow at either smaller (or larger) concentra-
tions of C +, 0 +, or other similar minority ions.

In summary, it has been shown that nonlinear ion
Landau (cyclotron) damping efficiently absorbs the
pump-wave power during ion-Bernstein —wave heating
experiments in present-day tokamaks and tandem mir-
rors. In the presence of impurity (minority) ions this
nonlinear majority-ion absorption is even stronger and
completely dominates linear cyclotron damping by im-
purities because of the latter's narrower width of reso-
nance.

After this manuscript was submitted, the paper by
Abe et ai "predict. ing the co/AH= —', nonlinear reso-
nance absorption was published. This paper shows
partial nonlinear absorption of the wave based on lim-
ited particle-simulation code results. Further, the
simulation results are interpreted in terms of a single-
particle, single-wave force equation which does not
correctly include collective (plasma shielding) effects.

Further, the paper by Toi et al. ' presented new ex-

perimental evidence for the importance of nonlinear
absorption in the JIPP T-IIU experiments.
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