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We present an analytical model for large-scale turbulence, based on a new closure which depends
on the growth rate of the instability-generating turbulence. For convection in stars we recover the
results of the mixing-length theory and for laboratory convection we recover the W —R' law.
The present model can readily be extended to include magnetic fields and rotation.

PACS numbers: 47.25.—c

Despite the fact that large-scale turbulence (LST) is
responsible for bulk properties of direct astrophysical
and geophysical interest like energy fluxes and tem-
perature and velocity fluctuations, no analytical model
for LST has yet been proposed which can claim a suc-
cess comparable to that of the Heisenberg-Kolmo-
goroff (Hie model' for small-scale turbulence (SST).
The proof that extending the HK model to large-scale
turbulence leads to unphysical results, as well as the
LST dependence on the specific nature of the stirring
mechanism, have led some to conclude that the
analytical modeling of LST is "formidable in the ex-
treme. " As a consequence, there has been an in-
creased effort in numerical simulations of LST, an ap-
proach which, however, cannot be expected to cover
the parameter space of interest in astrophysics and
geophysics. In this paper we propose an analytical
model for LST, compare its implications with astro-
physical and laboratory turbulent convection, and dis-
cuss future generalizations.

Following Ledoux, Schwarzschild, and Spiegel and
Yamaguchi, we shall write the energy balance equa-
tion as Eg„„=Ej„„i.e.,

k k

2Jt n, (k)F (k) dk = 2v, (k) Jt k F (k) dk. (1)

Here, F(k) is the energy spectral function [F(k)dk
represents the turbulent energy in the wave-number
interval between k and k + dk], n, (k) is the growth
rate of the instability that generates turbulence, v, (k)
is an eddy viscosity, and ko is the smallest wave
number compatible with the size of the system.

Equation (1) comprises the following processes: en-
ergy gain from buoyancy forces, energy loss by
kinematic viscosity v and heat conduction X, energy
gains or losses due to external fields, and finally, ener-
gy losses or gains due to dynarnica1 nonlinear interac-
tions. The first set of processes can be accounted for
by the linear theory; their net effect is represented by
the growth rate n, (k) and the net energy gain Eg„„ is
given by the left-hand side of Eq. (1), where the factor
of 2 arises because the energy is a quadratic function
of the amplitude.

The last process, represented by E~„„cannot be ac-
counted for by the linear theory and is written as a

two-step process: first, the removal of energy from
the interval ko—k (written in analogy to molecular
viscosity), followed by the redeposition of the same
energy into the remaining interval from k to ~. The
latter is represented by an eddy viscosity v, (k) exerted
upon modes of wave number k by modes with higher
k s, 1.e.,

, (k) = Jj,'" dk/k, (2)

where v, " is the eddy viscosity exerted by turbulence
on a band of wave numbers centered around k. In or-
der to know F(k) in the interval ko—k, one must
therefore know the eddy viscosity exerted by eddies in
the interval k —~. The function v, " is, however, not
known (the closure problem). By selecting a band of
wave numbers with k && ko, i.e., small eddies suffi-
ciently removed from ko as to behave independently
of the nature of the energy source, Heisenberg and
Kolmogoroff proposed an expression for v f th.at
yields a spectral function FHK —k in agreement
with data on small-scale turbulence. However, the
range of validity of the HK closure makes it unsuitable
for the estimate of bulk turbulent properties which are
contributed mostly by large-scale eddies. The convec-
tive fluxes computed in Refs. 5 using HK closure do
not agree well with the results of the mixing-length
model, Eq. (11).

In this paper, we are interested in deriving the spec-
tral function F (k) appropriate for large-scale tur-
bulence, i.e., for wave numbers close to ko. To accom-
plish that, we must first know the form of v, " in al-
most the entire wave-number interval, ko & k & ~, a
requirement clearly more demanding than in the HK
case. The disadvantageous situation can be turned
around by noting that in spite of not knowing the full
form of v,~k~, we do know the integral of it over the
entire k range (ko—~). In fact, for any v, (k), Eq. (1)
implies that

v, (ko) = n, (ko)/ko,

which allows us to rewrite (2) as

v, (k) = v, (k ) —
J „v,'"'dk/k. (4)

The problem is then reduced to that of finding v, in
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the interval kp —k. Equation (4) has the further advan-
tage that it allows us to test the validity of the expres-
sion for v,t"~ that we want to propose. If this suggested
v, were correct for the entire kp —~ interval, it would
satisfy the integral property (3). [See the comments
after Eq. (8).]

To construct v, , consider that in general v, "
&/2= A.kttk, A.k

= 1 kttk, Llk = (kF)', where Xk is an effec-
tive mean free path, uk a typical turbulent velocity,
and v. k a correlation time. Calling 7.k = n, ', we have

—2n, (kp) =kpLp '(n, k ')p. (6t )

Convection. —In the case of thermally driven convec-
tion, 8 the linear growth rate n, (k) is given by (k
= kpq)

Before we apply the above results, we need y, i.e. ,
n, (kp). We do so by requiring X(kp) =L», where Lv
is the longitudinal integral scale defined in Eq. (2.51)
of Orszag. ' Since A. (kp) depends on F(kp) which in
turn depends on n, (kp), we obtain

v,'"= kF (k)/n, (k). n, (k)/np ——[1+(1 —p, ) X'q'1'/' —Xq', (7)

n, (k)
n, (k) = n, (kp) = y 'n, (k).

n, kp
(6a)

The second argument is based on recent work on
differentially rotating disks. It can be shown that the
component of the Reynolds stress tensor 7;J acting on
the mean azimuthal rotation can be expressed as
7,@=v,'rO', where 0 is the angular velocity. The
turbulent viscosity v,

' can be shown to be given by—fFn, 'dk. Since it is physically reasonable to ex-
pect that v,

' is roughly equal to the turbulent viscosity
exerted on the largest eddies, we are led to the choice
(6a) for n, (k). It is, however, important to stress that
(6a) applies only to the LST region, where n, (k) & 0,
and not to the region in k space where n, (k) may be-
come negative.

Equation (5) is of general validity. In the HK model,
where the eddies are freely evolving, Xk= lk

—k
and so n, —k / F'/ . However, since the large ed-
dies are strongly forced upon by the stirring mecha-
nism, their correlation time 7k can no longer be simply
identified with the turnover time.

Substituting (5) and (4) into (1), one obtains a non-
linear integral equation for F(k) which can be solved.
The result is (the prime denotes d/dk)

k—2F(k) =k-'[ n'/'Jr kn"'(n, k ')'dk]'-(6).
0

In order to specify n„we shall make use of two in-
dependent arguments. First, the creation of a generic
eddy is contributed both by the breakup of larger ed-
dies as well as the growth of the instability-generating
tulbulcncc. Fol thc largest eddies k kp, only the
latter process is operative, thus suggesting n, (kp)
~ n, (kp). We propose to extend this result to the en-
tire group of LST eddies, and take

where 2np=X(1+a-)kp X ' and X = (1+x) 7r

x (xp, R ) . Here, X is the thermometric conductivi-
ty, o-= v/X the Prandtl number, and R the Rayleigh
number = gnpd /vX; d is the depth of the convective
layer, o. is the thermal expansion coefficient, g is the
local gravity, P is the temperature gradient excess over
the adiabatic gradient, and p, = 4o-(1+ o-) . The
parameter x = (k„+k» )/k, represents the degree of
anisotropy in the eddies sizes. As in previous work,
kpd =m (1+x)'/ .

Once (7) is substituted in (6), the integration can be
performed analytically for p, && 1, in which case
n (k) & 0 for all k's. The resulting F (k) is

F F q
—2n3/2(1 + X2q4) —1/2

where Fp C„np/ kp y——' and C„=(1+A. )'/ +A. .
For Xq &(1,F=k, while for Pq )) 1, F —k
respectively. Using (7) we derive v, (kp) = v(1+ o- ')
x (2kC~2 ) '. On the other hand, if we use (5), (7),
and (8) in (2) and take the limit k kp, i.e., if we as-
sume that our closure is valid for the entire k interval,
we obtain v(1+ o- ') (C„/2X) [C„—(2X)' ] which as
expected does not coincide with the exact expression
for v, (kp) just derived. It is, however, interesting that
the two results do coincide in the case of X &( 1,
which obtains in most astrophysical cases. Using
n, (k) and F (k), we have evaluated convective fluxes,
F„and temperature and velocity fluctuations which
can be given in analytical form. However, since the
most reliable data are for convective fluxes, we shall
present the results only for F, = c ppX4, where it can
be shown that

[n, (k) + v k ]F(k) dk.
gnPX ko

I Performing the integration, we derive

(2A. ) '[[C —(2A. )'/ ] +o.C [C„—(2X)'/ ]].1+x
Using (7) and (8) in (6b), we obtain for y, with ro = (2X)' C~,

y= (37rl/4)2(1 —XC~ 2), 2(1 —cu tan 'cu ')l = 1 —3A. C&(tanh 'C„' —tan 'C„' ).

(10)

(loa)

Astrophysics In most astrophy. s—ical settings (convective layers of stars, accretion disks, etc.), o. is much smaller
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than unity. Equation (10) can then be rewritten as

C =aS-'[(1+bS)"' 1—]',

where S=a-R, Say= (1+x) m 2 (X), and b =4x
x (1+x) m . The function A '(A. ) = 1+ (2X)'
x C„' is almost independent of X: For & «1, & = 1,
while for P» 1, 2 = —,'. The structure of Eq. (11) is

identical to that proposed by Bohm-Vitense using the
mixing-length theory. Furthermore, the dependence
of (11) on the anisotropy factor x is identical to the
one proposed on the basis of a phenomenological
model for the eddies annihilation probability. ' Furth-
ermore, we have verified that the expression for the
turbulent velocity is identical to the one derived from
the mixing-length model.

L,aboratory turbulent convection. —A major goal of ex-
perimental and theoretical research on turbulent con-
vections " '4 has been the search for the relation
between the Nusselt number N and the Rayleigh
number R,„~=gnb, TD3/vX, where D is the distance
between the two plates and AT the temperature drop.
Experiments performed with different substances were
found to exhibit a dependence of the type N —Rz p

with 0.257 ~ b ~ 0.333. Recently, Goldstein and
Tokuda, ' performing experiments with R„„~2
x 10" and S.71 ~ a ~ 6.76, established the relation

—coth = x' ' tanh [hx' '(P/P —1) ] =x' (13)

where the second equality is because only large tem-
perature distortions P/Po &) 1 are of interest. Fur-
thermore, in regions I and III, n, (k) has the form (7)
with A.

2 given in terms of x, P, . . . by

) '=16(I +x)'(p/p, )'(xl R,„,) (14)

Finally, averaging the total flux over region I (or III),
we obtain for the Nusselt number

total flux H =XATD 'N, being controlled by the two
boundary layers, is then independent of D. This im-
plies N —R exp.

Because of the general nature of this argument, the
N vs R relation has been studied with use of different
models. ' ' However, we are not aware of a deriva-
tion of (12) from a model of turbulence. Given the
division into three regions I, II, and III, we have
solved the linear equations for the temperature 6 and
the z component of the velocity ao separately in the
three regions, assuming solutions of the form—sin[(z, D —z)k] in I and III where P= const and
corresponding hyperbolic functions in region II where
P=o. Matching cu and cu' at z=L and z=D —L, and
using 2L/3 = DPO, where Po stands for 6 T/D, we ob-
tain (5 = k, L )

N = O.OSS6R,'!„'. (12)
N = (P/P, )(i+C), (is)

The confirmation of the —, power is of major impor-
tance since this value has long been suggested to be
the consequence of a strongly distorted temperature
profile, whereby P(z) =dT/dz is nonzero only in two
thin boundary layers (zones I and III) near the two
plates, each of thickness I., while in the largest part
(zone II) the fluid is nearly isothermal, P(z) = 0. The

1+4 + —', AC'=0, 4+ —,'A. (2x —I+2x'l 5 ')4'=0,

where 4 is provided by (10). Since in laboratory con-
vection (unlike in stars) D and AT are set experimen-
tally, the energetically most favorable state is the one
that requires the minimum energy input from the
source to sustain a given AT. This is obtained by re-
quiring that N be minimal with respect to P, i.e. , we
demand that BN/BP=0. Furthermore, we propose to
fix x by maximizing N with respect to x. Using (14),
(1S), and (10), we obtain (here, prime denotes d/d A. )

(i6)
which determine the values of x and A. . Knowing A. and x, we can use (14) to express P in terms of R,„~. Substitu-
tion in (15) yields [with use of (16) to eliminate 4]

where

~R expp (17)

= —,
' (1+x) '(x/2)' '5 '(2 —x —x' '5 ') '(Z' )' '

Before we solve (16) for a given a-, some general
results can be derived. (A) Using (16) and (10), one
can prove that 0.44 ~ x «1.07 and —,

' ~ 4 ~ 2. (B) In
the limits cr 0 and cr ~, we obtain

A —a'l3 (a- 0),

= 0.078y 'l ((r ~ ).
Both results are in agreement with observations. In

particular, the latter result is in agreement with the
well-known' upper limit for N.

Solving Eqs. (16) with (10) and (loa) for a-= 6.8
(water), we obtain

x = 0 78, A. =—0 32, y = 2 6, A = 0 044, (20)

to be compared with the measured value of 3
= 0.0556. Our model is therefore capable of reproduc-
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ing 80'/o of the observed flux, a very encouraging
result considering the simplicity of the model (part of
the discrepancy may be due to the approximation
p, (( 1, while for water p, = 0.45). We have also stud-
ied the case o-=1000 for which p. (( 1 is well satis-
fied. The results are

x=065, )t=69, 7 =205, A =0061. (21)

In summary, we have presented a model for large-
scale turbulence which (1) uses as the only ingredient
the growth rate n, (k) of the instability, (2) is based on
a new closure that depends on n, (k) itself, (3) is
analytical, (4) in the case of astrophysics, reproduces
the results of the mixing-length theory, i.e. , the for-
mula of Bohm-Vitense, and (5) in the case of labora-
tory turbulent convection, reproduces the recently es-
tablished X =MR'/ relation and (6) predicts an X vs
R relation in agreement with the general result derived
by Howard. '

The present model can be easily extended to include
the effects of rotation and/or magnetic fields.
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