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Towards Numerical Solutions of the Schrodinger Equation for Diatomic Molecules
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Many-body perturbation and coupled-cluster methods using numerical Hartree-Fock and corre-
lating orbitals are applied to diatomic molecules for the first time. For LiH, the correlation energy
is within 0.001 a.u. of the nonrelativistic correlation energy limit, which provides an energy of
—8.069 a.u. compared to the exact result of —8.070. These results suggest that highly accurate
results for diatomic molecules may be obtained by the proposed approach.

PACS numbers: 31.15.4+q, 31.20.Di

Following the development of many-body perturba-
tion theory (MBPT) by Brueckner and Goldstone,"?
Kelly made the initial applications to correlation ener-
gies and other properties of atoms.>”> By exploiting
the spherical atomic symmetry, which permits separa-
tion of the radial equation from the angular part, these
calculations were performed purely numerically.
These applications included the second and third or-
ders of perturbation theory with some consideration of
higher-order diagrams via denominator shifts. Kelly
and co-workers®’ attempted to use one-center-
expansion techniques for some molecules (H,, HF,
H,0) to retain the same numerical approach as for
atoms, but this was generally unsatisfactory due to the
extreme difficulty in correctly describing the effect of
the Coulomb potentials associated with the different
nuclear centers in molecules.

To rectify the multicenter problem, MBPT could be
performed using the conventional Slater- or
Gaussian-type basis sets employed in molecular
theory. This basis-set MBPT approach was accom-
plished and presented in a series of papers by Bartlett
and co-workers® 1% which has since led to extensive
numbers of MBPT applications!! [also referred to in
some circles as MP (Moller-Plesset) perturbation
theory!'?]. In general these applications explicitly in-
clude contributions from diagrams of higher-order
than Kelly considered— typically all diagrams through
fourth-order perturbation theory.!! Futhermore,
infinite-order coupled-cluster (CC)!> 14 generalizations
of MBPT have now been implemented; these are CC
methods which include T, cluster operators (CCD), all
diagrams resulting from 7; and 7, cluster operators
(CCSD) %15 and their products, and partial contribu-
tions of T3 (CCSDT-1).'® However, even though
these methods treat much higher categories of correla-
tion diagrams than in most MBPT applications, they
retain an error due to basis-set limitations that was vir-
tually eliminated in Kelly’s initial atomic calculations.
This follows since the asymptotic dependence of corre-

lated calculations such as CCSD, e.g., scales as n® for
n-basis functions, and CCSDT-1 as n’. This places a
severe restriction on the number of basis functions
that may be employed in molecular calculations, and,
consequently, it is seldom possible to extrapolate to
the basis-set limit for molecules.

Because of the separation of the angular and radial
parts in confocal, elliptical coordinates, diatomic mole-
cules are one molecular category that allows purely nu-
merical solutions in analogy with those for atoms.!” 18
Hence, it is of much interest to combine numerical
solutions for diatomic molecules with the infinite-
order summations of diagrams afforded by coupled-
cluster theory to attempt to approach the basis-set-
limit solution of the Schrédinger equation. When fu-
ture methods permit purely numerical results for
polyatomic molecules to be achieved, a similar strategy
for using numerical basis sets as presented below for
diatomic molecules should be generally applicable to
introduce electron correlation to a Hartree-Fock (HF)
starting point. The alternative of actually solving the
CC equations numerically, instead of just using a nu-
merical basis set, has been accomplished for atoms'’
and an analogous approach would be highly desirable
for diatomic molecules, but the same strategy for
atoms would be computationally prohibitive for
molecules. In this initial attempt we will limit our-
selves to a numerical basis set.

Methods for obtaining numerical self-consistent-
field (SCF) and multiconfiguration—self-consistent-
field (MCSCF) solutions for diatomic molecules have
been developed by McCullough and Adamowicz.!” 18
This technique provides occupied HF orbitals, while a
treatment of the correlation problem also requires a
mechanism to generate an appropriate set of correlat-
ing orbitals.

To define excited correlating orbitals, we employ the
idea of the Bethe-Goldstone (BG) hierarchy of equa-
tions used for the first time by Nesbet?? to correlate
electrons. In this scheme, the many-electron problem
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is partitioned into two-, three-, etc., electron frag-
ments, and then electrons of only one fragment at a
time are allowed to correlate while the rest remain in
their HF states. For example, for two-electron frag-
ments this can be accomplished by a variational calcu-
lation with a configuration-interaction- (CI-) type
wave function in which only determinants with single
and double excitations from the particular two occu-
pied orbitals are included:

Wy =P+ el +

Similarly, ¢ is used for three-electron fragments,
Y. for four, etc. For two-electron fragments, BG
equations become identical with independent-
electron-pair (IEPA) equations.?!l" %2

For our present purpose we use the concept of the
BG fragmentation with independent variational, corre-
lated numerical (MCSCF) calculations for each two-
electron fragment. The union of the correlating nu-
merical MCSCF orbitals generated in this procedure
constitute the excited-orbital basis set, while the occu-
pied orbitals are represented by their HF solutions.

Stepwise, following a partitioning into two-electron
fragments and independent MCSCF calculations, we
assemble a common orbital set and evaluate the one-
and two-electron integrals. Using the common basis
set, an SCF calculation is performed which keeps occu-
pied orbitals unchanged but combines the correlation
orbitals into a set of functions which diagonalize the
Fock operator. At this point linearly dependent orbi-
tals are removed.?* These solutions to the matrix Fock
equations are then used in the CC calculations to facil-
itate immediate MBPT comparisons with HF-based
basis-set approximations, rather than just orthogonal-
izing the excited orbitals among themselves. Of
course in CC theory, the results would be independent
of such a transformation among the excited orbitals.!!

Calculations have been performed for the H, and
LiH molecules and the results are reported in Table I.
Forty-five MCSCF numerical orbitals of o, 7, and &
symmetry were obtained for the H, molecule. Of
course, since the BG pair equation for this case is ex-
actly equivalent to the Schrodinger equation, the cov-
eraged CCSD energy should be exactly the variational
MCSCEF result in the same basis set, as indicated. The
current CCD, CCSD, and MCSCF results should be
nearly saturated in the owd space, while further im-
provements could be introduced by additional ¢ orbi-
tals.

An apt comparison is offered by the very accurate
MBPT-CC results of Jeziorski er al.?* With use of
large, explicitly correlated Gaussian geminal (GG)
basis sets which expand each pair in forty such func-
tions that are then extensively optimized by minimiz-
ing the second-order Hylleraas functional, practically
saturated values for the second- and third-order corre-

pCIU) + 2uapclU. )

lation corrections and CCD have been obtained. The
current numerical-basis-set results are in excellent
agreement, although they differ in finite orders pri-
marily because of incompleteness in neglecting ¢ and
higher functions. The infinite-order CCD is in much
better agreement apparently due to some cancellations
in finite orders. The inclusion of single excitations via
CCSD accounts for —0.00013 a.u.

For the LiH molecule calculations have been per-
formed using seventy numerical MCSCF orbitals, also
of o, w, and & symmetry. These orbitals were generat-
ed by independent MCSCEF calculations for the (1o0)?2,
(20)?%, (1020) singlet and triplet coupled electron
pairs. In this basis set our CCD energy is already
slightly closer to the experimental value than the GG
result, again showing cancellation in lower orders of
perturbation theory. Adding in single and triple exci-
tations with our CCSDT-1 model'® we obtain
—0.08183 a.u., in comparison to the nonrelativistic
limit of —0.083 a.u.2® This is a highly accurate result
to the Schroédinger equation for a molecule with more
than two electrons.

Another pertinent comparison is with the mul-
tireference single and double CI (MRSDCI) 168-
contracted Gaussian-function (i.e. 111 counting =, 3,
¢,y as single functions) results of Handy et al.?® This
result of —0.08169 a.u. is a rigorous upper-bound to
the exact correlation energy, and is in excellent agree-
ment with our values. Unlike CI, the CC methods are
not rigorously variational, although they may be
shown to be upper bounds up to some order in pertur-
bation theory, and, except for pathological cases, in
practice show upper bound character in comparison to
full CI?7 (i.e., the best possible basis-set result).

In conclusion, the expansions of CC correlation
functions in terms of one-electron-orbital products are
capable of giving very accurate results (about 99% of
the correlation energy for the H, and LiH molecules)
even within a limited range of the angular momenta
(in the present calculations through & only) provided
that correlation orbitals are well optimized. Secondly,
the answers are as good as those using two-electron
geminal basis functions, but unlike the latter, which
are currently limited to s-type geminals, this technique
can be applied to much more complicated diatomic
molecules. Thirdly, using seventy numerical orbitals
and CCSDT-1 our results are comparable to the effec-
tive basis-set-limit LiH result, which employs 111 con-
tracted Gaussian orbitals. Fourthly, the BG method of
variationally correlated fragments (pairs) offers a
promising procedure for spanning the correlating orbi-
tal space for very accurate CC calculations.

The procedure proposed can be applied to any dia-
tomic molecule. In particular, the very interesting and
controversial results for transition-metal diatomics like
Cu, 2 and Cr,? suffer from the basis-set limitations.
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TABLE 1. Comparison of MBPT [E (2), E(3), and E (4)] and coupled cluster (CCD, CCSD, and CCSDT-1) correlation
energies for H, and LiH molecules obtained by using explicitly correlated Gaussian geminals, Slater and Gaussian orbitals (for
LiH), and numerical orbitals. All quantities are in atomic units.

H,

45 numerical orb.

40 GGW@ (180,157,125)
E(2) —0.03421 —0.03334
E(3) —0.00438 —0.00507
E(4) —0.00143® —0.00148
CCD —0.04041 —0.04037
CCSD —0.04051
MCSCF —0.04051¢
Experiment(“) —0.0408

LiH
32 Slaters‘® 70 numerical orb. 111 Gaussian Orb.W

160 GG (180,107 ,45) (300 ,247,165) (540,337,175,6¢,1y)
E(2) -0.07217 —0.06539 —0.07025
E(3) —0.00689 —0.00983 —0.00866
E(4) —0.00193» —0.00225 —0.00210%
CCD —0.08148 —~0.07798 —0.08152
CCSD —-0.07816 —0.08167
CCSDT-1 —0.07829 —0.08183"
MRSDCI —0.08169™

Experiment®

—0.0832 +0.0001

(@ Gaussian geminal and experimental results for H, and LiH have been taken from Ref. 24.

®PDouble and quadruple excitation diagram contributions only.
(©)Full MCSCF optimization of all 45 diagonal configurations.

(@ Each electron pair function has been expanded in its own basis set of 40 GG’s.

(e)Slater basis set, £(2) and E (3) are from Ref. 5. This is a typical normal basis calculation.

(DThe fourth-order triple excitation contribution was calculated with use of a truncated basis set of 58 numerical orbitals.

(&) Currently the authors of Ref. 24, after revision of their strong orthogonality parameters, recommend a new slightly lower value of 0.08151

a.u.

(MThis is the largest basis-set result for LiH reported (Ref. 26). The energy was evaluated by a MRSDCI consisting of 132015 C,, symmetry

adapted configurations.

The current approach should contribute to diminishing
the effect of this restriction in the ab initio results.
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