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We investigate the possibility of scales of deconfinement in SU(N) lattice gauge theories with in-
finitely heavy sources in different representations. We employ Monte Carlo methods for N =4,
factorization for N = oo and strong-coupling mean-field techniques for even N =< 16. No scales of

deconfinement are found.
PACS numbers: 11.15.Ha, 05.70.Fh, 11.30.Rd

Evidence has been presented for the existence of
scales of chiral-symmetry breaking; at least in the
quenched approximation different representations (r)
of massless quarks have (¥, ¥,)=0 below different
temperatures Tc'.1 Here we investigate the possibility
that the deconfinement transition? occurs at different
temperatures 7 for different representations of infi-
nitely massive quarks.?

The order parameter for the confinement of static
sources of representation r is the trace of the Wilson
line matrix in the rth representation, X,(W). We con-
sider infinitely massive sources because only in that
case is {X;(W)) (whose magnitude is e —F'/T, where F,
is the change in free energy due to adding a
representation-r quark to the system and T is the tem-
perature) a true order parameter: (X, (W)) =0 (=0)
when the sources are confined (unconfined).

How could scales of deconfinement come about?
For reasons which will become clear, let us first con-
sider SU(4) gauge theory. With the notation of Table
L X¢((W)=tW and Xg(W)=5[(trW)2+trW?] are
both protected from getting an expectation value at
low temperatures by a Z (4) [center of SU(4)] global
symmetry of the gauge theory which takes W
— emin/2 But Xg(W), unlike X¢(W), is invariant
under the Z(2) subgroup W — — W. Thus g can
deconfine at a lower temperture than f (T.f < Tf) if
the Z (4) symmetry first breaks down to Z (2) (at 7,%)
before breaking completely (at 7). Figure 1(a)
shows a Monte Carlo configuration of Wilson lines at
T < Tf where the Z (4) symmetry is unbroken, Fig.
1(b) shows a configuration at T > Tf with completely
broken Z(4) symmetry, and Fig. 1(c) is a hypothetical
configuration at 7f < T < TJ in which a Z(2) sym-
metry remains with (Xg)#0, (Xg) =0. Is this latter
phase likely to occur? A loose transcription of the
phase (Xg)#0, (X;) =0 into the language of effec-
tive-spin-theory might be (S?)=0, (S)=0, with
S € Z(4). Such a phase has been observed in studies
of nearest-neighbor Z(4) spin systems in d=2
dimensions*; we know of no searches for it with d > 2.
From a statistical mechanics viewpoint, whether or not
a Z(2) phase occurs depends on the interactions of
the spins or Wilson lines. From a physics point of
view the existence of a phase with (Xg)=0, (X;) =0

might require a reexamination of the belief that plas-
mas always yield Debye screening of all charges®’—a
belief based primarily on studies of Abelian theories.

If Z(4) does break to Z(2) for SU(4) gauge theory
it would be expected that all representations with
2(mod4) blocks would deconfine (because of invari-
ance under W— — W) while representation with
1(mod2) blocks would remain confined until the
remaining symmetry breaks at 7f. [The remaining
representations with 0(mod4) blocks are never con-
fined because they can always be screened by gluons.]
Similarly, for any group, the possible deconfining
scenarios can be easily enumerated with the scale at
which any representation deconfines determined by its
N-ality. In particular, SU(2) and SU(3) would not be
expected to have deconfinement scales.

We performed Monte Carlo simulations® of SU(4)
in 2+1 and 3+1 dimensions to look for evidence of
separate deconfining transitions for the f, g, and h
representations. {X,(W)=+[(tr W)2—tr W?] is in-
variant under W — — W and thus would be expected
to go nonzero when X, does.} No such evidence was
found. For example, Fig. 2(a) shows the behavior of
(X¢) and (Xy) as functions of the coupling 8 (increas-
ing B corresponds to raising the temperature) on a
2x 252 lattice; there appears to be no distinction
between the two represtentations. The picture for a
5x 103 lattice [Fig. 2(b)] looks very similar; in addi-
tion, Figs. 1(a) and 1(b) show the distribution of Wil-
son line variables for one configuration before and
after the transition. There is no indication of a Z(2)-

TABLE 1. Designation of representations.
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FIG. 1. (a) SU(4) Monte Carlo plot of Im tr W vs Re tr W for a particular configuration just below 7. The global Z (4) sym-
metry is unbroken (up to finite-size effects). (b) Same as (a), but at T > T}, i.e., with the Z (4) symmetry completely broken.
(c) Hypothetical SU(4) plot of ImtrW vs RetrW at T¥ < T < T/, i.e., with Z (4) broken to Z (2) (W — — W).

symmetric phase such as that shown in Fig. 1(c).
Any representation r, with r blocks, satisfies
Xr(W)=EnCi'; ..... i,_,,NWi1 Wi2 W

r—nN

[plus a constant if »=0(modN)] where W, are the eigenvalues of W.
As N [of SU(N)] approaches infinity, we can use the factorization property’

(AB) =(A)Y(B)[1+ O(1/ND],
which implies that

Xe(W) =3,Cn AW W) (W, _ )+ O(1/NP).

As long as any (nontrivial) remnant of the Z(N) symmetry remains, the eigenvalues of W satisfy (W)
=e2™n/N(W,), n=0, and thus are prevented from getting an expectation value. This implies that (X,(W)) is
forced to remain zero, up to terms O (1/N?), until the Z (N) symmetry is completely broken. Thus it appears that
scales of deconfinement do not occur in the limit N — oo.

In the region 4 < N < o we contented ourselves with an exploratory search using crude strong-coupling, mean-
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FIG. 2. (a) SU(4) Monte Carlo data on a 2 x 252 lattice showing X¢/4 (dots) and X,/6 (crosses) vs sweep number for increas-
ing values of the coupling, 8. (b) Same as (a), but on a 5x 103 lattice.

field lattice techniques. Our philosophy was that if any evidence of scales was found a more thorough investigation
would follow whereas a null result would not, of course, be conclusive. In a region of coupling-constant space
(with no ““bulk” or large-N phase transition) the effective action in terms of Wilson lines can be approximated by®

~ N,
S[W]=Zln El%l X (W)W (x+i))],
where ’

B.= [dU x;(Wexpl(8/2N)tr(U + U],

(D

d, is the dimension of r, and N, is the number of links in the temporal direction. Applying the standard mean-
field technique®? involves a saddle-point approximation of the partition function

Z = [ 1aWlldKlexp{ SIW]—Re tr[K' W1+ VK1),

with eV[K]Ef[dU]exp{Retr[KTU]}. The usual

mean-field Ansatz is W=wl, K=k1. We use W
=W11+iW2(—01 ?)NxN,K=k11+ik2(——01 (1))NXN for
even N. A solution with w,=0, w;=0 at some cou-
pling B would indicate the possibility of a (Xg)=0,
(Xg) =0 phase with Z(N) broken down to Z(2)
(W — — W which leaves the eigenvalues of W un-
changed when w;=0). S[W] was expanded about
B=0 to order B* with N,=2, 4< even N <16, and
the saddle points were found by numerical methods.
The result was that the saddle point which maximized
the integrand of (2) had w,=0 before and after w,
went nonzero. The values of B at which w; went
nonzero are compatiable with results obtained with the
W=wl, K=kl Ansatz® as would be expected. All
the phase transitions were first order.

We discussed how scales of deconfinement might
occur in gauge theories. We search for such scales us-
ing Monte Carlo methods for SU(4), factorization for
SU(e), and crude strong-coupling mean-field tech-
niques for SU(N), 4<= even N < 16. No scales were
found, yet it may be that some other action or group
gives rise to scales or even that some of the other
exotic phases found in spin systems* have their coun-
terparts in corresponding finite-temperature gauge
theories.
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