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Physical CP Phase and Maximal CP Nonconservation
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We give some applications for a CP-nonconserving quantity which is invariant under nontrivial
rephasings of the Kobayashi-Maskawa mixing matrix. It is shown to resolve one of the two ambi-
guities involved in defining the concept of maximal CP nonconservation. The second, more intrin-
sic, ambiguity is partially resolved in the framework of an especially symmetrical class of parametri-
zations.

PACS numbers: 11.30.Er

It would clearly be rather beautiful if nature chooses
nonconservation of CP in a "maximal" way as she
does for P and C separately. Although the characteris-
tic ratio of CP-nonconserving to CP-conserving weak-
decay amplitudes is around 10 3, the CP nonconserva-
tion might be considered maximal if it were found to
be associated with a certain parameter in the Lagrangi-
an becoming as large as it could possibly be. Indeed,
in the "standard" model of elementary particles all the
Lagrangian-level CP nonconservation occurs in a sin-
gle phase of the Kobayashi-Maskawa' (KM) mixing
matrix. A great deal of experimental and theoretical
study indicates thai the only way in which the stand-
ard model is like1y to be consistent with experiment is
for the sine of this phase to be large. Hence it seems
there is some possibility that maximal CP nonconser-
vation might hold as has been recently emphasized by
several authors.

This brings to the forefront a conceptual point.
Since the KM matrix may be parametrized with possi-
ble CP-nonconserving phases in many different ways,
how can we be sure that what we call maximal CP non-
conservation is not just an artifact of a particular con-
vention. In fact it has been questioned5 whether there
exists any reasonable way at a11 to state that this matrix
leads to maximal CP nonconservation. There are actu-
ally two types of ambiguity. First, for a given presen-
tation of the mixing matrix one can obtain new
parametrizations by rephasing transformations. %e
will show that this ambiguity can be completely over-
come by introducing a certain invariant phase. This
concept will also be shown to be useful when consider-
ing the extension of the mixing matrix to four or more
generations. The second type of ambiguity concerns
the way in which the "angular" dependence of the
mixing matrix is initially presented, e.g. , how it is built
up as a product of two-dimensional matrices. This am-
biguity is in a sense intrinsic. For each presentation
there is a clear definition of maximality, namely when
the appropriate invariant phase is m/2. The real ques-
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Hq2 expresses the amount of mixing between the first
two generations while @~2 is a CP-nonconserving
phase. The complex rotations cu,& for general i and j
are defined analogously. Then we choose as our

tion is, of course, what underlying theory is appropri-
ate to a given presentation. In other words, if the
underlying theory is indeed maximally CP noncon-
serving which of the various presentations would
demonstrate it with a phase of m/2. It at first might
seem that nothing more could be said at the level of
the mixing matrix. However, we shall see that if the
(aesthetic) demand is made that the presentation not
distinguish one generation from another, there are six
natural parametrizations. These divide, for practical
purposes, into just two equivalence classes. One of
these classes furthermore can be ruled out experimen-
tally as a candidate for a maximally CP-nonconserving
theory.

The mixing matrix, U, in the standard model is a
3&&3 unitary matrix which may be taken to be uni-
modular. It has a gaugelike freedom in that all physi-
cal predictions are unchanged when we multiply on the
left-hand side by diag{ exp[i(n~ —y~) ], exp[i(n2
—y2) ], exp[i (n3 y3) ] ) an—d on the right-hand side
by diag[(exp —in~), exp( —in2), exp( —in3) ], where
g;n; = g;y; = 0. Originally, ' a "gauge" was chosen by
using this freedom to eliminate four phases from U
(leaving four parameters). Here, however, we shall
keep the two nontrivia1 extra phases.

For our purpose it is convenient to build up U as a
product of "complex rotations" connecting each possi-
ble pair of generations. The rotation cu» between the
first and second generations, for example, is given by
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standard form U,
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(2)

where c;, = c osH~ and $J = sinH;J. Equation (2) differs
from the most general unitary 3 & 3 matrix by the trivi-
al possibility of multiplication by a diagonal matrix of
phases on the left. We have eliminated these trivial
phases with the parameters y;. Note, by Eq. (2), that
this is equivalent to taking the diagonal (11) and (22)
elements of U to be real. We thus will always consider
U to remain unimodular with two real diagonal ele-
ments. In section II of Ref. 7 it is shown that the
reparametrization due to the nontrivial phases o.; may
be simply described by the transformation

&J &'J =@1+~
To find a CP-nonconserving quantity which is in-
dependent of the phase-related parametrizations of U
we look for an object which is invariant under (3).
This object is evidently (defining @31———@13)

I123 412 + 423 + 431

It then seems natural to choose as the condition for
maximal CP nonconservation the following:

4& = —,
'

m x (odd integer).

Notice that both of the explicit examples of U used
in Ref. 5 to illustrate a possible ambiguity in the defin-
ition of maximal CI' nonconservation are special cases
of Eq. (2). Thus if (5) is used as the condition for
maximal CP nonconservation there is no ambiguity.

It is easy to generalize the invariant phase to any
number of generations. For the case of four genera-
tions the following choice of U was recently noted to
be very convenient:

[~34~24~14) ( 123~12~13)~

In addition to I123 the three combinations

I124 412 + 424 414~

I134 413 + 434 414~

I234 = 423 + @34
—

@24i

are invariant under rephasings of U. Since

~123 I124 + 1134 I234

there are, as expected, only three independent CP-
nonconserving invariants in the four-generation case.
This approach makes manifest the fact that the three
vanishing phases cannot be chosen to be @12, @23 and
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@13 since that would force the arbitrary invariant I,23 to
be zero. Physically, this means that the three phases
connecting the first three generations cannot be swept
away, as one might initially expect on the basis of
counting alone.

As another application of the invariant phase, notice
tlIat slllce 111 (2) eac11 p11ase exp( + I $1~ ) ls IIlultlplled
by s~, 4 must always appear in a combination
s 12$ 13s23e' . This has the consequence that all CP-
nonconserving physical quantities will be proportional
to s 12s 13s23 sinC . A similar result was obtained by ex-
plicit computation by Chau and Keung. ' Note that
for the unimodular matrix with two real diagonal ele-
ments in Eq. (2) this product is simply —Im TrU. A
convenient feature of the parametrization (2) is that
each angle may be approximately identified (within
several percent) with the magnitude of a physical
quark transition amplitude, i.e. , $,2

——
~ U„, ~, $,3

) Ugg ( $23 ) U $ ( . Thus within this approximation
all CP-nonconserving quantities contain an overall fac-
tor ( U„, U„& U,& ( sin@.

The presentation (2) is symmetric in the sense that
each generation is being treated on the same footing
by factoring U into "complex rotations" in each of the
three planes. However, there is an ambiguity as to
which order of multiplication is to be used. There are
five other symmetrical presentations using ~12 QJ23,

and ~13 in different orders. These may be related to
(2) in the approximation" that $12 ——0 (e), $23
=0(e ), and$13 ——0(e ), with small e. The presenta-
tions' ~23~13~12 and ~13~23~12 are then the same as
(2) while the presentations co'13''12cu23, cu12~'13co23, and
0»~»~» are equivalent to each other bui different
from (2). The relation between the two classes is

g ven»12 12 412 412 $23 23 423 423
tan@' = sinC& [cos@—$12$23/$13] ', $13 = $13sin4&/
sinC '. If we consider 4' = @12+@23

—@'13 to be + 7r/2
we obtain ~cos4 ~

=
~
U U,b/ U„t, ~, which is greater

than one experimentally. Thus this alternative class of
presentations is ruled out as a possibility for defining
maximal CP nonconservation.

We are specifying U by three angles and three
phases in all the parametrizations above. It is interest-
ing to notice that a unimodular U with two real diago-
nal elements may be specified (but possibly not neatly
parametrized) directly by the magnitudes and phases
of (U12, U13 U23) or of (U21 U31 U32). Writing
UJ =

~ UJ ~exp(X;J ) we may easily see that
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X = X12 + X23 X13 and X' = X21 + X32 —X31 are invariant
phases. The (Utz, Ut3, U&3) specification is evidently
equivalent to (2) while the (Uqt, U3t, U3q) specifica-
tion may be seen, from the remark in footnote 12, to
be of the primed class above. The quark mixing ma-
trix, in the presentations equivalent to (2) may be ap-
proximately written in terms of the experimental tran-
sition amplitudes:

IU., Ie™
I U.b I

U 1

1

I U,b U., I

—
I U.b I e ' —l,b I

(9)

where we have rotated away @tz and @z3.
It seems perhaps less likely that unsymmetrical

presentations, which do not treat each generation on
an equal footing, would naturally describe an elegant
underlying theory. However, these may be discussed
in a similar way to the symmetrical ones. Here we
shall only consider the original KM choice. ' This is
essentially of the "Euler" type coz3cutzcoq3. (An invari-
ant phase is @q3

—@&3.) The original KM matrix may
be put in our standard form (2) by a trivial phase
transformation U~ exp(iy;) UJ where yt = 0,
yz = 0, y3 = m' —5. This corresponds to the identifica-
tions 4'=$23 @12=ft3=0, $1= $tp, $3=$13/$12,

tan5 = sin4& [cos@—$t3/$ tzsp3] ', $q = $z3 sin@/sin5.
The definition of maximal CP nonconservation ap-
propriate to this presentation is 5= +m. /2. This im-
plies for the invariant phase C of (2), cos4
= +

I U,b/U~ U,b I rather than cos@= Q. We thus see
another illustration of the fact that maximal CP non-
conservation in one presentation may lead to numeri-
cal values of physical CP-nonconserving quantities dif
ferent from the ones obtained with maximal CP non-
conservation in another scheme. Notice that the quan-
tity —Im TrU which measures the strength of all CP
nonconservations can be rewritten using the identifica-
tions above as' s1S2S3 sinh.

We point out that —Im TrU becomes approximately
I U., U.b U,b I when ~ ts ~/2 b« I U., U.b U,b I

x [ —1IU„b/U, bU„, I
]'i when 5 is n/2 . Th. us the nu-

merical values of maximal CP-nonconserving ampli-
tudes are larger in the presentations like (2) than in
the KM-type presentations or any others. This might
be considered a criterion for preferring (2), although
maximality at the Lagrangian level can certainly be
consistently defined in the KM scheme. It seems to us
that the schemes like (2) are aesthetically preferable
because they do not single out one generation from
the others.

Finally, we remark that the magnitude of the CP im-
purity e= (2g~ pop)/3 is given, according to the
standard recipe" with, however, the mixing conven-
tion based on C, by

2 2 t

mg mg
I6 I

—3B$t3$z3 sinC + 0.4 ln
~

+ 0.6
~ $/3 1—

mc mc

S13
cos4

S12S13
(10)

'9he main uncertainty in (10) is the parameter 8 which
is expected to be in the range —,

' to 1. Provided that
the top quark mass is less than 60 GeV, and using
present data on $&3 and $ t3, (10) will be maximized for
4=90'. But notice that there is a rather slow depen-
dence on 4 in this range. The variations from the
maximum at 4 = 90 out to 60' and 120' are at most
30% and 100/o, respectively. Thus, as a practical
matter, it would not be easy to conclude using our
knowledge of e that 4 is really maximal. In principle,
the parameter e'= (g+ pop)/3 could shed some
light on this question but the calculation' is hard to
carry out to the required accuracy.
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