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Noting that quantum measurements are in general incomplete, we develop, starting from a re-
cent entropic formulation of uncertainty, a maximum uncertainty principle to define the statistical
mechanics of microscopic systems. The resulting ensemble entropy coincides with the expression
of von Neumann, thus providing a unified, quantum basis for statistical physics of all systems. Ex-
amples involving momentum and position measurements are discussed.
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Quantum measurements' are as a rule incomplete in
that they fail to provide an exhaustive specification of
the state of a system. A quantum-mechanical system
is, in general, described by a density matrix, p, whose
complete specification requires the measurement of
N —1 independent elements, X being the dimen-
sionality of the relevant Hilbert space. Clearly, except
for those cases where the density-matrix description is
used for only a finite subspace (e.g. , spin substates) of
the full Hilbert space, N will be infinite and p inacces-
sible to a complete measurement. A pure state is
therefore an idealization, since otherwise it would con-
stitute an example of a completely measured system in
an infinite Hilbert space. Hence, the realizable (or
preparable) states of a system must be considered
members of an ensemble, and so there arises the basic
problem of the assignment of p on the basis of the in-
complete information obtained from the preparation
process. While this is a problem of quantum statistics
at a very basic level and therefore fundamental to both
quantum theory and statistical mechanics, there is a
distinct lack of a systematic treatment of it in the
literature, 4 principally because of the customary re-
striction to idealized measurements. The object of this
note is to present such a treatment, and to demon-
strate the fundamental nature of the results that follow
from it. The underlying principle will be the equality
of a priori probabilities (EAP), implemented on the
basis of a recently formulated definition of the entropy
of a quantum measurement. This formulation will in
particular imply the standard expression for the entro-
py of an ensemble, thus providing a unified, quantum-
mechanical basis for microscopic and macroscopic,
equilibrium and nonequilibrium statistical mechanics.

Let us recall the formulation of measurement entropy
in Ref. 6. In general, the measurement of an observ-
able A, in the state p, is accomplished by means of a
measuring device D which will include a partitioning
of the spectrum of 3 into a number of subsets n;

called "bins. " The result of the measurements are
summarized in a set of probabilities, H;, of finding
the outcome of the measurement to be within the
given bin o.;". This partitioning of the spectrum of 3
generates a corresponding one of the Hilbert space into
(orthogonal) subspaces M; together with a set of pro-
jections 7r; . The entropy (in units of the Boltzmann
constant) of such a measurement was defined in Ref. 6
as

S (p ~D") = —Xtr(pm, ")ln[tr(p&, ) ],

and shown there to be a suitable measure of
quantum-mechanical uncertainty. Note that measure-
ment entropy is a joint property of the system and the
measuring device.

The problem to be solved is this: A quantum sys-
tem, measured (or prepared) to have the set of proba-
bilities (W,"), where v labels the measured observables
A' of the system, is to be assigned a density matrix ac-
cording to EAP. As usual, this requires the identifica-
tion of an ensemble entropy, 5, as a measure of uncer-
tainty (or lack of information) about the system. The
desired p would then be so determined as to maximize
this uncertainty/entropy. According to (1), then, we
must identify two ingredients, an observable (a self-
adjoint operator), W, and an associated measuring de-
vice, D, the two of which would jointly serve to de-
fine the ensemble entropy as S =S(p~D ). It is im-
mediately clear that lack of information must be
gauged against the most accurate measuring device
available. This requires the device to be as finely
binned as possible; such an idealized device will be
denoted by D „. The observable 8' on the other
hand, should be identified as the operator which em-
bodies the greatest amount of information, hence the
least uncertainty/entropy, about the system. This
proposition, that p is to be determined so that the least
uncertain observable of the system has the maximum
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possible measurement entropy, will be referred to as
the maximum uncertainty principle. It is the quantum
expression of the preposition that the most-probable
state is that which embodies what is known and none
else. In symbols, S = inf~S(p~D, „). Now it can be
shown mathematically' that the above infimum is ob-
tained for 8'=p, so that S=S(p~DI'„). In other
~ords, our measure of entropy has singled out p as the
best determined observable of the system, as indeed it
must. That the measurement entropy of the density
matrix is to be designated as the measure of our lack
of information about the system is in perfect accord
with its significance as the depository of all available
information about the system.

Since p has a strictly discrete spectrum (recall that
trp = 1 and trp ~ 1), the projection 7'' corresponding
to D~,„ is simply ~i ) (i ~, ~i ) being the ith eigenvector
of p, implying therefore that

S = S(p iD~„)
= —Xtr(p7r f') ln[tr(p7r f') ] = —tr(plnp).

This is the familiar expression introduced by von Neu-
mann. 2 It is well known that the standard results of
statistical mechanics immediately follow upon maxim-
izing S (subject to the constraints imposed by the
known data). Here, we have achieved a unified basis
for microscopic and macroscopic statistics by adopting
a unified measure of uncertainty/entropy. In retro-
spect, the uniqueness and universality properties of
the entropy function, introduced into physics by
Boltzmann with new uses advocated by Jaynes,
uniquely qualify it for such a role.

%'e now have the solution to the problem posed
above: The ensemble entropy 5 is maximized subject
to the constraints ~;"= tr(vr;"p), yielding

p = Z 'exp —gX,"7r;",

where the partition function Z and the Lagrange multi-
pliers A. ;" are determined from

(4)

While the similarity of (3) to the standard distribu-
tion functions is evident, a basic difference between
the microscopic and macroscopic cases must be noted:
Whereas the known data [+;") for the former pertain
to individual, microscopic systems (i.e. , momentum of
a particle in a beam), those in the latter correspond to
bulk properties of large aggregates (e.g. , volume of a
gas, total magnetization of a spin system). Further-
more, the latter is almost exclusively concerned with
stationary ensembles (for which p commutes with the
Hamiltonian), whereas there is no such stipulation for
microscopic ensembles and, a fortiori, no question of

time averages or ergodicity. It goes without saying that
the maximum uncertainty principle as formulated
above, even though it has wider implications than
those already tested within statistical mechanics, is one
that is implicitly accepted and routinely applied by
physicists. Indeed, in practice, any systematic devia-
tion away from its predictions would be attributed to
an unaccounted "bias" in the preparation procedure
and searched for. Furthermore, insofar as it specifies a
definite measure of uncertainty/entropy for any physi-
cal system, it resolves, in principle at least, the ambi-
guity which arises in the implementation of EAP for
continuous distributions. 5 8

An important aspect of the above formulation is the
mutual harmony of its mathematical rigor and its phys-
ical sense. Consider, for example, a state prepared by
the measurement of one observable A. One finds that

p = g; [9';"7r,"/tr(7r;") ]. Clearly, unless every 7r;" has
finite trace, this p will not be normalizable. For exam-
ple, if A is the momentum operator p, tr~~= ~ for sr~

corresponding to any nonempty bin (or interval) .
Therefore, preparation by momentum measurement
only, no matter how accurate, leads to a mathematical-
ly unacceptable p. However, such a measurement is
also self-contradictory physically, since any procedure
allowing for momentum measurements requires the
presence, in the confines of the laboratory, of the par-
ticle being measured. The latter of course implies a
constraint on the possible values of the position x,
which in turn constitutes information on x, contrary to
the initial assumption. Once the possible values of x
are thus constrained, the spectrum of p becomes
discrete, tr(7r; ) finite, and p normalizable. In fact any
preparation procedure implies such a constraint on the
possible values of position, a fact which when over-
looked will lead to an unacceptable p. It is perhaps
worth emphasizing that this is not merely a matter of
mathematical purism, but rather an integral feature of
the present formalism. Indeed the very starting point,
the definition of measurement entropy in Eq. (1),
would in general be meaningless if the imperfect
resolving power of actual devices was not accounted
for.

%e shall now turn to examples involving momen-
tum and position measurements, say on the particles
of a beam, considered in one dimension for conven-
ience. The first example is modeled after the celebrat-
ed thought experiments (such as that of the Heisen-
berg microscope) often discussed in connection with
the uncertainty principle. It involves the measurement
of the probabilities +" and H~ that the particle has a
position, respectively momentum, in the interval o."
= ( —,

'
Ax, 2b,x ), respectively n—~=(———,

'
Ap, + —,

' 4p ),
with vr '~ being the projection operators onto o. ~. Ad-
ditionally, we have the above-mentioned spatial con-
straint on the position, say ~x ~

& ,' I., corresponding t—o
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o.L ——( —,' L—,,
' L—),&L = 1, expressing the information

that the particles are certainly to be found with the la-
boratory (whose "size" is L).

A direct application of Eqs. (3) and (4) gives

q= Z-'exp( —Z"~" ~'~' ZL~—L),

Z = 2 exp( —X+ ) g„cosh[(1 —p, „)X + p, „X+]'

where 2A. + = P + A~, and where (p, „] is the (finite) set
of the eigenvalues of the operator 8=m"m~vr acting
on the Hilbert space L2(a.L). The operator B is of fin-
ite rank (and of the Hilbert-Schmidt class in the limit
L ~ ), positive definite, and possesses a bounded
spectrum 0 & p,„~p, ~,„&1. Moreover, one can
show that for the physically interesting case of
(b,x/L ) « 1, and with

(Ax) (Ap)/27r = k, trB = g„p,„'=k,

p, m, „=k [1—(m. k/6) + 0 (k ) ] for k ~ 0,

whose x and p variances are matched to the bins of our
measuring device so that hx = —,4x and hp = —,'4p,
with (hx ) (Bp ) = —, . Since k = I/7r for these values,
we can use the small k expansion for p, „given above
to find that & c/ = 0.79, whereas the corresponding
probability for the Gaussian state is ~ o/2=0. 68. As
expected, &c )Po since ~C) is optimal in this respect.
This large 79% probability notwithstanding, a simple
calculation shows that the conventional variance mea-
sure of uncertainty for ~C) is essentially infinite sim-
ply because its x- and p-space wave functions have
power law [e.g. , 0 (1/p) ], albeit very small, tails. This
is another instance of the 1imitations of the conven-
tional variance measure of uncertainty. In summary
then, the uncertainty condition for the typical two-bin
measurement of position and momentum may be ex-
pressed by

P =H "y'~ ~ —,
' (I+ [(Ax) (Ap)/27T]'

(Ax)(Ap) & 1.

P max

The uncertainty principle is now manifested in that
the joint probability P = 9' P~ of finding the particle
in the intervals Ax and Ap has an upper bound H
which is less than unity and which decreases with de-
creasing k. Indeed considering the symmetric case of
9' "=H ~, which corresponds to A."=A~ and which for a
given value of H +P~ maximizes H, we find from
the solution given above that

X„p,„sinh(p, „x+)

g„cosh(p, „A.+ )

It is immediately clear from this result that 1 —p,~ 29"~ ~ 1+p, ,„(recall that 0 & p, ,„&1). The
two extreme limits above correspond, not unexpected-
ly, to infinitely "hot" and "cold" ensembles corre-
sponding to X+ + ~. One finds that at these limits

p reduces to pure states ~H) (H ~
and ~C) (C ~, respec-

tively, where ~H/C) = (p, ,„vr" + 7r~)
~ max), with

B
~
max) = p, ,„~max) and g Jfc = —, + —,p, ,„. Given

the above restriction to the symmetric case ~"=9'~,
~H ) represents the worst, and

~
C ) the best possible

x-p definition, while the mixed state corresponding to
A. + = 0 represents an intermediate case with P''
The latter, in fact, describes an ensemble for which the
particle is as likely as not to be found in the interva1
4x, respectively, 4p, and can be realized by an equal
mixture of two beams, one filtered through o." and the
other through o,~.

As a measure of how well ~C) fares in realizing a
beam with a well-defined position and momentum, we
shall compare it with a Gaussian (pure) state

~ G)

As the above analysis shows, this is an experimentally
more meaningful statement than the conventional one
involving variances.

Given that the conventional minimum uncertainty
state is a pure state not preparable by means of an ac-
tual measuring apparatus, there arises the question of
how closely it can be approximated given the "resolu-
tions" Ax and 4p of the apparatus. It is clear that
there must exist a universal bound U;„f, a function of
k on dimensional grounds, which is the infimum of
U~ = (&x )~(5p )~ for all p preparable by the given de-
vice. It is immediately clear that U;„r(k) —, for
k 0 and U;„r(k) (7r/6)k for k ~ ~, the latter
representing purely classical probability distributions.
While the determination of U;„r(k) represents a prob-
lem of immense complexity, the following result (for
small k) provides useful information on the question.

Given a device with resolutions Ax and Ap, 7 the
upper bound to what can be achieved is represented by
the (ideal) covering of the entire range of the values
of x and p by means of bins of size 4x and 4p, labeled
by

n,"= [(s ——,
' )Ax, (s + —,

' )4x],

nf = [(s ——,
' )Ap, (s + —,

' )Ap ], s = 0, + 1,. ..

The general solution corresponding to a measurement
by means of this device is given by p = Z
x exp( —g, X,"m,'+X~7r~), where, as usual, Z is deter-
mined by trp = 1 and the A. 's by ( —8/BX,"~)lnZ
=P,"'~, where ~,"~ are the measured probabilities. "
Consider now the case where these probabilities match
those of a Gaussian state with (Sx )/(Bp) = (Ax )/
(Ap). ' A straightforward calculation then gives the
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following expansions in k:

~ "=H t'= (2k)'t exp( —2m. ks2) [1+—, (27rks)2+ . . . ],

S (p ~D") +S (p ~D~) —2 (5x )p (Ap )p
= —ln(2k) ——,

'
m k + ... .

Now an inequality derived in Ref. 13 states that

S (p ~D") +S (p ~D~) ~ 1 —ln(2k),

so that the above equation can be restated as

U, = (»), (&p), & —,
' + —,', (~x)(~p),

k «1, (6)

where this lower bound is in fact approached as
(Ax ) (bp ) 0.'3 Physically, this result indicates that
for k « 1, the uncertainties resulting from finite
resolutions are additive corrections to the intrinsic
quantum mechanical ones. We conclude by noting
that the ensemble entropy calculated for this state is
—,', (Ax ) (Ap ) in[12/(Ax ) (Ap ) ] for small k. This is a

measure of the uncertainty and impurity of the state
determined by the measured probabilities , "~. This
impurity is characteristic of, and wi11 persist for, any
actual measuring device.
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~'~Permanent address.
~In this Letter, "measurement" refers to a process that

prepares a state, and it entails the production of a sufficient
number of copies of the system, a fraction of which is sub-

jected to interaction with measuring devices, thereby serving
to measure/ prepare reproducibly the remaining copies.
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